Automated Market Makers (AMMs) Comparison 2020

Comparison between Avalanche, Cosmos and Polkadot

Comparison between Avalanche, Cosmos and Polkadot
Reposting after was mistakenly removed by mods (since resolved - Thanks)
A frequent question I see being asked is how Cosmos, Polkadot and Avalanche compare? Whilst there are similarities there are also a lot of differences. This article is not intended to be an extensive in-depth list, but rather an overview based on some of the criteria that I feel are most important.
For better formatting see https://medium.com/ava-hub/comparison-between-avalanche-cosmos-and-polkadot-a2a98f46c03b
https://preview.redd.it/e8s7dj3ivpq51.png?width=428&format=png&auto=webp&s=5d0463462702637118c7527ebf96e91f4a80b290

Overview

Cosmos

Cosmos is a heterogeneous network of many independent parallel blockchains, each powered by classical BFT consensus algorithms like Tendermint. Developers can easily build custom application specific blockchains, called Zones, through the Cosmos SDK framework. These Zones connect to Hubs, which are specifically designed to connect zones together.
The vision of Cosmos is to have thousands of Zones and Hubs that are Interoperable through the Inter-Blockchain Communication Protocol (IBC). Cosmos can also connect to other systems through peg zones, which are specifically designed zones that each are custom made to interact with another ecosystem such as Ethereum and Bitcoin. Cosmos does not use Sharding with each Zone and Hub being sovereign with their own validator set.
For a more in-depth look at Cosmos and provide more reference to points made in this article, please see my three part series — Part One, Part Two, Part Three
(There's a youtube video with a quick video overview of Cosmos on the medium article - https://medium.com/ava-hub/comparison-between-avalanche-cosmos-and-polkadot-a2a98f46c03b)

Polkadot

Polkadot is a heterogeneous blockchain protocol that connects multiple specialised blockchains into one unified network. It achieves scalability through a sharding infrastructure with multiple blockchains running in parallel, called parachains, that connect to a central chain called the Relay Chain. Developers can easily build custom application specific parachains through the Substrate development framework.
The relay chain validates the state transition of connected parachains, providing shared state across the entire ecosystem. If the Relay Chain must revert for any reason, then all of the parachains would also revert. This is to ensure that the validity of the entire system can persist, and no individual part is corruptible. The shared state makes it so that the trust assumptions when using parachains are only those of the Relay Chain validator set, and no other. Interoperability is enabled between parachains through Cross-Chain Message Passing (XCMP) protocol and is also possible to connect to other systems through bridges, which are specifically designed parachains or parathreads that each are custom made to interact with another ecosystem such as Ethereum and Bitcoin. The hope is to have 100 parachains connect to the relay chain.
For a more in-depth look at Polkadot and provide more reference to points made in this article, please see my three part series — Part One, Part Two, Part Three
(There's a youtube video with a quick video overview of Polkadot on the medium article - https://medium.com/ava-hub/comparison-between-avalanche-cosmos-and-polkadot-a2a98f46c03b)

Avalanche

Avalanche is a platform of platforms, ultimately consisting of thousands of subnets to form a heterogeneous interoperable network of many blockchains, that takes advantage of the revolutionary Avalanche Consensus protocols to provide a secure, globally distributed, interoperable and trustless framework offering unprecedented decentralisation whilst being able to comply with regulatory requirements.
Avalanche allows anyone to create their own tailor-made application specific blockchains, supporting multiple custom virtual machines such as EVM and WASM and written in popular languages like Go (with others coming in the future) rather than lightly used, poorly-understood languages like Solidity. This virtual machine can then be deployed on a custom blockchain network, called a subnet, which consist of a dynamic set of validators working together to achieve consensus on the state of a set of many blockchains where complex rulesets can be configured to meet regulatory compliance.
Avalanche was built with serving financial markets in mind. It has native support for easily creating and trading digital smart assets with complex custom rule sets that define how the asset is handled and traded to ensure regulatory compliance can be met. Interoperability is enabled between blockchains within a subnet as well as between subnets. Like Cosmos and Polkadot, Avalanche is also able to connect to other systems through bridges, through custom virtual machines made to interact with another ecosystem such as Ethereum and Bitcoin.
For a more in-depth look at Avalanche and provide more reference to points made in this article, please see here and here
(There's a youtube video with a quick video overview of Avalanche on the medium article - https://medium.com/ava-hub/comparison-between-avalanche-cosmos-and-polkadot-a2a98f46c03b)

Comparison between Cosmos, Polkadot and Avalanche

A frequent question I see being asked is how Cosmos, Polkadot and Avalanche compare? Whilst there are similarities there are also a lot of differences. This article is not intended to be an extensive in-depth list, but rather an overview based on some of the criteria that I feel are most important. For a more in-depth view I recommend reading the articles for each of the projects linked above and coming to your own conclusions. I want to stress that it’s not a case of one platform being the killer of all other platforms, far from it. There won’t be one platform to rule them all, and too often the tribalism has plagued this space. Blockchains are going to completely revolutionise most industries and have a profound effect on the world we know today. It’s still very early in this space with most adoption limited to speculation and trading mainly due to the limitations of Blockchain and current iteration of Ethereum, which all three of these platforms hope to address. For those who just want a quick summary see the image at the bottom of the article. With that said let’s have a look

Scalability

Cosmos

Each Zone and Hub in Cosmos is capable of up to around 1000 transactions per second with bandwidth being the bottleneck in consensus. Cosmos aims to have thousands of Zones and Hubs all connected through IBC. There is no limit on the number of Zones / Hubs that can be created

Polkadot

Parachains in Polkadot are also capable of up to around 1500 transactions per second. A portion of the parachain slots on the Relay Chain will be designated as part of the parathread pool, the performance of a parachain is split between many parathreads offering lower performance and compete amongst themselves in a per-block auction to have their transactions included in the next relay chain block. The number of parachains is limited by the number of validators on the relay chain, they hope to be able to achieve 100 parachains.

Avalanche

Avalanche is capable of around 4500 transactions per second per subnet, this is based on modest hardware requirements to ensure maximum decentralisation of just 2 CPU cores and 4 GB of Memory and with a validator size of over 2,000 nodes. Performance is CPU-bound and if higher performance is required then more specialised subnets can be created with higher minimum requirements to be able to achieve 10,000 tps+ in a subnet. Avalanche aims to have thousands of subnets (each with multiple virtual machines / blockchains) all interoperable with each other. There is no limit on the number of Subnets that can be created.

Results

All three platforms offer vastly superior performance to the likes of Bitcoin and Ethereum 1.0. Avalanche with its higher transactions per second, no limit on the number of subnets / blockchains that can be created and the consensus can scale to potentially millions of validators all participating in consensus scores ✅✅✅. Polkadot claims to offer more tps than cosmos, but is limited to the number of parachains (around 100) whereas with Cosmos there is no limit on the number of hubs / zones that can be created. Cosmos is limited to a fairly small validator size of around 200 before performance degrades whereas Polkadot hopes to be able to reach 1000 validators in the relay chain (albeit only a small number of validators are assigned to each parachain). Thus Cosmos and Polkadot scores ✅✅
https://preview.redd.it/2o0brllyvpq51.png?width=1000&format=png&auto=webp&s=8f62bb696ecaafcf6184da005d5fe0129d504518

Decentralisation

Cosmos

Tendermint consensus is limited to around 200 validators before performance starts to degrade. Whilst there is the Cosmos Hub it is one of many hubs in the network and there is no central hub or limit on the number of zones / hubs that can be created.

Polkadot

Polkadot has 1000 validators in the relay chain and these are split up into a small number that validate each parachain (minimum of 14). The relay chain is a central point of failure as all parachains connect to it and the number of parachains is limited depending on the number of validators (they hope to achieve 100 parachains). Due to the limited number of parachain slots available, significant sums of DOT will need to be purchased to win an auction to lease the slot for up to 24 months at a time. Thus likely to lead to only those with enough funds to secure a parachain slot. Parathreads are however an alternative for those that require less and more varied performance for those that can’t secure a parachain slot.

Avalanche

Avalanche consensus scan scale to tens of thousands of validators, even potentially millions of validators all participating in consensus through repeated sub-sampling. The more validators, the faster the network becomes as the load is split between them. There are modest hardware requirements so anyone can run a node and there is no limit on the number of subnets / virtual machines that can be created.

Results

Avalanche offers unparalleled decentralisation using its revolutionary consensus protocols that can scale to millions of validators all participating in consensus at the same time. There is no limit to the number of subnets and virtual machines that can be created, and they can be created by anyone for a small fee, it scores ✅✅✅. Cosmos is limited to 200 validators but no limit on the number of zones / hubs that can be created, which anyone can create and scores ✅✅. Polkadot hopes to accommodate 1000 validators in the relay chain (albeit these are split amongst each of the parachains). The number of parachains is limited and maybe cost prohibitive for many and the relay chain is a ultimately a single point of failure. Whilst definitely not saying it’s centralised and it is more decentralised than many others, just in comparison between the three, it scores ✅
https://preview.redd.it/ckfamee0wpq51.png?width=1000&format=png&auto=webp&s=c4355f145d821fabf7785e238dbc96a5f5ce2846

Latency

Cosmos

Tendermint consensus used in Cosmos reaches finality within 6 seconds. Cosmos consists of many Zones and Hubs that connect to each other. Communication between 2 zones could pass through many hubs along the way, thus also can contribute to latency times depending on the path taken as explained in part two of the articles on Cosmos. It doesn’t need to wait for an extended period of time with risk of rollbacks.

Polkadot

Polkadot provides a Hybrid consensus protocol consisting of Block producing protocol, BABE, and then a finality gadget called GRANDPA that works to agree on a chain, out of many possible forks, by following some simpler fork choice rule. Rather than voting on every block, instead it reaches agreements on chains. As soon as more than 2/3 of validators attest to a chain containing a certain block, all blocks leading up to that one are finalized at once.
If an invalid block is detected after it has been finalised then the relay chain would need to be reverted along with every parachain. This is particularly important when connecting to external blockchains as those don’t share the state of the relay chain and thus can’t be rolled back. The longer the time period, the more secure the network is, as there is more time for additional checks to be performed and reported but at the expense of finality. Finality is reached within 60 seconds between parachains but for external ecosystems like Ethereum their state obviously can’t be rolled back like a parachain and so finality will need to be much longer (60 minutes was suggested in the whitepaper) and discussed in more detail in part three

Avalanche

Avalanche consensus achieves finality within 3 seconds, with most happening sub 1 second, immutable and completely irreversible. Any subnet can connect directly to another without having to go through multiple hops and any VM can talk to another VM within the same subnet as well as external subnets. It doesn’t need to wait for an extended period of time with risk of rollbacks.

Results

With regards to performance far too much emphasis is just put on tps as a metric, the other equally important metric, if not more important with regards to finance is latency. Throughput measures the amount of data at any given time that it can handle whereas latency is the amount of time it takes to perform an action. It’s pointless saying you can process more transactions per second than VISA when it takes 60 seconds for a transaction to complete. Low latency also greatly increases general usability and customer satisfaction, nowadays everyone expects card payments, online payments to happen instantly. Avalanche achieves the best results scoring ✅✅✅, Cosmos with comes in second with 6 second finality ✅✅ and Polkadot with 60 second finality (which may be 60 minutes for external blockchains) scores ✅
https://preview.redd.it/kzup5x42wpq51.png?width=1000&format=png&auto=webp&s=320eb4c25dc4fc0f443a7a2f7ff09567871648cd

Shared Security

Cosmos

Every Zone and Hub in Cosmos has their own validator set and different trust assumptions. Cosmos are researching a shared security model where a Hub can validate the state of connected zones for a fee but not released yet. Once available this will make shared security optional rather than mandatory.

Polkadot

Shared Security is mandatory with Polkadot which uses a Shared State infrastructure between the Relay Chain and all of the connected parachains. If the Relay Chain must revert for any reason, then all of the parachains would also revert. Every parachain makes the same trust assumptions, and as such the relay chain validates state transition and enables seamless interoperability between them. In return for this benefit, they have to purchase DOT and win an auction for one of the available parachain slots.
However, parachains can’t just rely on the relay chain for their security, they will also need to implement censorship resistance measures and utilise proof of work / proof of stake for each parachain as well as discussed in part three, thus parachains can’t just rely on the security of the relay chain, they need to ensure sybil resistance mechanisms using POW and POS are implemented on the parachain as well.

Avalanche

A subnet in Avalanche consists of a dynamic set of validators working together to achieve consensus on the state of a set of many blockchains where complex rulesets can be configured to meet regulatory compliance. So unlike in Cosmos where each zone / hub has their own validators, A subnet can validate a single or many virtual machines / blockchains with a single validator set. Shared security is optional

Results

Shared security is mandatory in polkadot and a key design decision in its infrastructure. The relay chain validates the state transition of all connected parachains and thus scores ✅✅✅. Subnets in Avalanche can validate state of either a single or many virtual machines. Each subnet can have their own token and shares a validator set, where complex rulesets can be configured to meet regulatory compliance. It scores ✅ ✅. Every Zone and Hub in cosmos has their own validator set / token but research is underway to have the hub validate the state transition of connected zones, but as this is still early in the research phase scores ✅ for now.
https://preview.redd.it/pbgyk3o3wpq51.png?width=1000&format=png&auto=webp&s=61c18e12932a250f5633c40633810d0f64520575

Current Adoption

Cosmos

The Cosmos project started in 2016 with an ICO held in April 2017. There are currently around 50 projects building on the Cosmos SDK with a full list can be seen here and filtering for Cosmos SDK . Not all of the projects will necessarily connect using native cosmos sdk and IBC and some have forked parts of the Cosmos SDK and utilise the tendermint consensus such as Binance Chain but have said they will connect in the future.

Polkadot

The Polkadot project started in 2016 with an ICO held in October 2017. There are currently around 70 projects building on Substrate and a full list can be seen here and filtering for Substrate Based. Like with Cosmos not all projects built using substrate will necessarily connect to Polkadot and parachains or parathreads aren’t currently implemented in either the Live or Test network (Kusama) as of the time of this writing.

Avalanche

Avalanche in comparison started much later with Ava Labs being founded in 2018. Avalanche held it’s ICO in July 2020. Due to lot shorter time it has been in development, the number of projects confirmed are smaller with around 14 projects currently building on Avalanche. Due to the customisability of the platform though, many virtual machines can be used within a subnet making the process incredibly easy to port projects over. As an example, it will launch with the Ethereum Virtual Machine which enables byte for byte compatibility and all the tooling like Metamask, Truffle etc. will work, so projects can easily move over to benefit from the performance, decentralisation and low gas fees offered. In the future Cosmos and Substrate virtual machines could be implemented on Avalanche.

Results

Whilst it’s still early for all 3 projects (and the entire blockchain space as a whole), there is currently more projects confirmed to be building on Cosmos and Polkadot, mostly due to their longer time in development. Whilst Cosmos has fewer projects, zones are implemented compared to Polkadot which doesn’t currently have parachains. IBC to connect zones and hubs together is due to launch Q2 2021, thus both score ✅✅✅. Avalanche has been in development for a lot shorter time period, but is launching with an impressive feature set right from the start with ability to create subnets, VMs, assets, NFTs, permissioned and permissionless blockchains, cross chain atomic swaps within a subnet, smart contracts, bridge to Ethereum etc. Applications can easily port over from other platforms and use all the existing tooling such as Metamask / Truffle etc but benefit from the performance, decentralisation and low gas fees offered. Currently though just based on the number of projects in comparison it scores ✅.
https://preview.redd.it/4zpi6s85wpq51.png?width=1000&format=png&auto=webp&s=e91ade1a86a5d50f4976f3b23a46e9287b08e373

Enterprise Adoption

Cosmos

Cosmos enables permissioned and permissionless zones which can connect to each other with the ability to have full control over who validates the blockchain. For permissionless zones each zone / hub can have their own token and they are in control who validates.

Polkadot

With polkadot the state transition is performed by a small randomly selected assigned group of validators from the relay chain plus with the possibility that state is rolled back if an invalid transaction of any of the other parachains is found. This may pose a problem for enterprises that need complete control over who performs validation for regulatory reasons. In addition due to the limited number of parachain slots available Enterprises would have to acquire and lock up large amounts of a highly volatile asset (DOT) and have the possibility that they are outbid in future auctions and find they no longer can have their parachain validated and parathreads don’t provide the guaranteed performance requirements for the application to function.

Avalanche

Avalanche enables permissioned and permissionless subnets and complex rulesets can be configured to meet regulatory compliance. For example a subnet can be created where its mandatory that all validators are from a certain legal jurisdiction, or they hold a specific license and regulated by the SEC etc. Subnets are also able to scale to tens of thousands of validators, and even potentially millions of nodes, all participating in consensus so every enterprise can run their own node rather than only a small amount. Enterprises don’t have to hold large amounts of a highly volatile asset, but instead pay a fee in AVAX for the creation of the subnets and blockchains which is burnt.

Results

Avalanche provides the customisability to run private permissioned blockchains as well as permissionless where the enterprise is in control over who validates the blockchain, with the ability to use complex rulesets to meet regulatory compliance, thus scores ✅✅✅. Cosmos is also able to run permissioned and permissionless zones / hubs so enterprises have full control over who validates a blockchain and scores ✅✅. Polkadot requires locking up large amounts of a highly volatile asset with the possibility of being outbid by competitors and being unable to run the application if the guaranteed performance is required and having to migrate away. The relay chain validates the state transition and can roll back the parachain should an invalid block be detected on another parachain, thus scores ✅.
https://preview.redd.it/li5jy6u6wpq51.png?width=1000&format=png&auto=webp&s=e2a95f1f88e5efbcf9e23c789ae0f002c8eb73fc

Interoperability

Cosmos

Cosmos will connect Hubs and Zones together through its IBC protocol (due to release in Q1 2020). Connecting to blockchains outside of the Cosmos ecosystem would either require the connected blockchain to fork their code to implement IBC or more likely a custom “Peg Zone” will be created specific to work with a particular blockchain it’s trying to bridge to such as Ethereum etc. Each Zone and Hub has different trust levels and connectivity between 2 zones can have different trust depending on which path it takes (this is discussed more in this article). Finality time is low at 6 seconds, but depending on the number of hops, this can increase significantly.

Polkadot

Polkadot’s shared state means each parachain that connects shares the same trust assumptions, of the relay chain validators and that if one blockchain needs to be reverted, all of them will need to be reverted. Interoperability is enabled between parachains through Cross-Chain Message Passing (XCMP) protocol and is also possible to connect to other systems through bridges, which are specifically designed parachains or parathreads that each are custom made to interact with another ecosystem such as Ethereum and Bitcoin. Finality time between parachains is around 60 seconds, but longer will be needed (initial figures of 60 minutes in the whitepaper) for connecting to external blockchains. Thus limiting the appeal of connecting two external ecosystems together through Polkadot. Polkadot is also limited in the number of Parachain slots available, thus limiting the amount of blockchains that can be bridged. Parathreads could be used for lower performance bridges, but the speed of future blockchains is only going to increase.

Avalanche

A subnet can validate multiple virtual machines / blockchains and all blockchains within a subnet share the same trust assumptions / validator set, enabling cross chain interoperability. Interoperability is also possible between any other subnet, with the hope Avalanche will consist of thousands of subnets. Each subnet may have a different trust level, but as the primary network consists of all validators then this can be used as a source of trust if required. As Avalanche supports many virtual machines, bridges to other ecosystems are created by running the connected virtual machine. There will be an Ethereum bridge using the EVM shortly after mainnet. Finality time is much faster at sub 3 seconds (with most happening under 1 second) with no chance of rolling back so more appealing when connecting to external blockchains.

Results

All 3 systems are able to perform interoperability within their ecosystem and transfer assets as well as data, as well as use bridges to connect to external blockchains. Cosmos has different trust levels between its zones and hubs and can create issues depending on which path it takes and additional latency added. Polkadot provides the same trust assumptions for all connected parachains but has long finality and limited number of parachain slots available. Avalanche provides the same trust assumptions for all blockchains within a subnet, and different trust levels between subnets. However due to the primary network consisting of all validators it can be used for trust. Avalanche also has a much faster finality time with no limitation on the number of blockchains / subnets / bridges that can be created. Overall all three blockchains excel with interoperability within their ecosystem and each score ✅✅.
https://preview.redd.it/ai0bkbq8wpq51.png?width=1000&format=png&auto=webp&s=3e85ee6a3c4670f388ccea00b0c906c3fb51e415

Tokenomics

Cosmos

The ATOM token is the native token for the Cosmos Hub. It is commonly mistaken by people that think it’s the token used throughout the cosmos ecosystem, whereas it’s just used for one of many hubs in Cosmos, each with their own token. Currently ATOM has little utility as IBC isn’t released and has no connections to other zones / hubs. Once IBC is released zones may prefer to connect to a different hub instead and so ATOM is not used. ATOM isn’t a fixed capped supply token and supply will continuously increase with a yearly inflation of around 10% depending on the % staked. The current market cap for ATOM as of the time of this writing is $1 Billion with 203 million circulating supply. Rewards can be earnt through staking to offset the dilution caused by inflation. Delegators can also get slashed and lose a portion of their ATOM should the validator misbehave.

Polkadot

Polkadot’s native token is DOT and it’s used to secure the Relay Chain. Each parachain needs to acquire sufficient DOT to win an auction on an available parachain lease period of up to 24 months at a time. Parathreads have a fixed fee for registration that would realistically be much lower than the cost of acquiring a parachain slot and compete with other parathreads in a per-block auction to have their transactions included in the next relay chain block. DOT isn’t a fixed capped supply token and supply will continuously increase with a yearly inflation of around 10% depending on the % staked. The current market cap for DOT as of the time of this writing is $4.4 Billion with 852 million circulating supply. Delegators can also get slashed and lose their DOT (potentially 100% of their DOT for serious attacks) should the validator misbehave.

Avalanche

AVAX is the native token for the primary network in Avalanche. Every validator of any subnet also has to validate the primary network and stake a minimum of 2000 AVAX. There is no limit to the number of validators like other consensus methods then this can cater for tens of thousands even potentially millions of validators. As every validator validates the primary network, this can be a source of trust for interoperability between subnets as well as connecting to other ecosystems, thus increasing amount of transaction fees of AVAX. There is no slashing in Avalanche, so there is no risk to lose your AVAX when selecting a validator, instead rewards earnt for staking can be slashed should the validator misbehave. Because Avalanche doesn’t have direct slashing, it is technically possible for someone to both stake AND deliver tokens for something like a flash loan, under the invariant that all tokens that are staked are returned, thus being able to make profit with staked tokens outside of staking itself.
There will also be a separate subnet for Athereum which is a ‘spoon,’ or friendly fork, of Ethereum, which benefits from the Avalanche consensus protocol and applications in the Ethereum ecosystem. It’s native token ATH will be airdropped to ETH holders as well as potentially AVAX holders as well. This can be done for other blockchains as well.
Transaction fees on the primary network for all 3 of the blockchains as well as subscription fees for creating a subnet and blockchain are paid in AVAX and are burnt, creating deflationary pressure. AVAX is a fixed capped supply of 720 million tokens, creating scarcity rather than an unlimited supply which continuously increase of tokens at a compounded rate each year like others. Initially there will be 360 tokens minted at Mainnet with vesting periods between 1 and 10 years, with tokens gradually unlocking each quarter. The Circulating supply is 24.5 million AVAX with tokens gradually released each quater. The current market cap of AVAX is around $100 million.

Results

Avalanche’s AVAX with its fixed capped supply, deflationary pressure, very strong utility, potential to receive air drops and low market cap, means it scores ✅✅✅. Polkadot’s DOT also has very strong utility with the need for auctions to acquire parachain slots, but has no deflationary mechanisms, no fixed capped supply and already valued at $3.8 billion, therefore scores ✅✅. Cosmos’s ATOM token is only for the Cosmos Hub, of which there will be many hubs in the ecosystem and has very little utility currently. (this may improve once IBC is released and if Cosmos hub actually becomes the hub that people want to connect to and not something like Binance instead. There is no fixed capped supply and currently valued at $1.1 Billion, so scores ✅.
https://preview.redd.it/mels7myawpq51.png?width=1000&format=png&auto=webp&s=df9782e2c0a4c26b61e462746256bdf83b1fb906
All three are excellent projects and have similarities as well as many differences. Just to reiterate this article is not intended to be an extensive in-depth list, but rather an overview based on some of the criteria that I feel are most important. For a more in-depth view I recommend reading the articles for each of the projects linked above and coming to your own conclusions, you may have different criteria which is important to you, and score them differently. There won’t be one platform to rule them all however, with some uses cases better suited to one platform over another, and it’s not a zero-sum game. Blockchain is going to completely revolutionize industries and the Internet itself. The more projects researching and delivering breakthrough technology the better, each learning from each other and pushing each other to reach that goal earlier. The current market is a tiny speck of what’s in store in terms of value and adoption and it’s going to be exciting to watch it unfold.
https://preview.redd.it/dbb99egcwpq51.png?width=1388&format=png&auto=webp&s=aeb03127dc0dc74d0507328e899db1c7d7fc2879
For more information see the articles below (each with additional sources at the bottom of their articles)
Avalanche, a Revolutionary Consensus Engine and Platform. A Game Changer for Blockchain
Avalanche Consensus, The Biggest Breakthrough since Nakamoto
Cosmos — An Early In-Depth Analysis — Part One
Cosmos — An Early In-Depth Analysis — Part Two
Cosmos Hub ATOM Token and the commonly misunderstood staking tokens — Part Three
Polkadot — An Early In-Depth Analysis — Part One — Overview and Benefits
Polkadot — An Early In-Depth Analysis — Part Two — How Consensus Works
Polkadot — An Early In-Depth Analysis — Part Three — Limitations and Issues
submitted by xSeq22x to CryptoCurrency [link] [comments]

[ CryptoCurrency ] Comparison between Avalanche, Cosmos and Polkadot

[ 🔴 DELETED 🔴 ] Topic originally posted in CryptoCurrency by xSeq22x [link]
A frequent question I see being asked is how Cosmos, Polkadot and Avalanche compare? Whilst there are similarities there are also a lot of differences. This article is not intended to be an extensive in-depth list, but rather an overview based on some of the criteria that I feel are most important.
For better formatting see https://medium.com/ava-hub/comparison-between-avalanche-cosmos-and-polkadot-a2a98f46c03b
https://preview.redd.it/lg16iwk2dhq51.png?width=428&format=png&auto=webp&s=6c899ee69800dd6c5e2900d8fa83de7a43c57086

Overview

Cosmos

Cosmos is a heterogeneous network of many independent parallel blockchains, each powered by classical BFT consensus algorithms like Tendermint. Developers can easily build custom application specific blockchains, called Zones, through the Cosmos SDK framework. These Zones connect to Hubs, which are specifically designed to connect zones together.
The vision of Cosmos is to have thousands of Zones and Hubs that are Interoperable through the Inter-Blockchain Communication Protocol (IBC). Cosmos can also connect to other systems through peg zones, which are specifically designed zones that each are custom made to interact with another ecosystem such as Ethereum and Bitcoin. Cosmos does not use Sharding with each Zone and Hub being sovereign with their own validator set.
For a more in-depth look at Cosmos and provide more reference to points made in this article, please see my three part series — Part One, Part Two, Part Three
https://youtu.be/Eb8xkDi_PUg

Polkadot

Polkadot is a heterogeneous blockchain protocol that connects multiple specialised blockchains into one unified network. It achieves scalability through a sharding infrastructure with multiple blockchains running in parallel, called parachains, that connect to a central chain called the Relay Chain. Developers can easily build custom application specific parachains through the Substrate development framework.
The relay chain validates the state transition of connected parachains, providing shared state across the entire ecosystem. If the Relay Chain must revert for any reason, then all of the parachains would also revert. This is to ensure that the validity of the entire system can persist, and no individual part is corruptible. The shared state makes it so that the trust assumptions when using parachains are only those of the Relay Chain validator set, and no other. Interoperability is enabled between parachains through Cross-Chain Message Passing (XCMP) protocol and is also possible to connect to other systems through bridges, which are specifically designed parachains or parathreads that each are custom made to interact with another ecosystem such as Ethereum and Bitcoin. The hope is to have 100 parachains connect to the relay chain.
For a more in-depth look at Polkadot and provide more reference to points made in this article, please see my three part series — Part One, Part Two, Part Three
https://youtu.be/_-k0xkooSlA

Avalanche

Avalanche is a platform of platforms, ultimately consisting of thousands of subnets to form a heterogeneous interoperable network of many blockchains, that takes advantage of the revolutionary Avalanche Consensus protocols to provide a secure, globally distributed, interoperable and trustless framework offering unprecedented decentralisation whilst being able to comply with regulatory requirements.
Avalanche allows anyone to create their own tailor-made application specific blockchains, supporting multiple custom virtual machines such as EVM and WASM and written in popular languages like Go (with others coming in the future) rather than lightly used, poorly-understood languages like Solidity. This virtual machine can then be deployed on a custom blockchain network, called a subnet, which consist of a dynamic set of validators working together to achieve consensus on the state of a set of many blockchains where complex rulesets can be configured to meet regulatory compliance.
Avalanche was built with serving financial markets in mind. It has native support for easily creating and trading digital smart assets with complex custom rule sets that define how the asset is handled and traded to ensure regulatory compliance can be met. Interoperability is enabled between blockchains within a subnet as well as between subnets. Like Cosmos and Polkadot, Avalanche is also able to connect to other systems through bridges, through custom virtual machines made to interact with another ecosystem such as Ethereum and Bitcoin.
For a more in-depth look at Avalanche and provide more reference to points made in this article, please see here and here
https://youtu.be/mWBzFmzzBAg

Comparison between Cosmos, Polkadot and Avalanche

A frequent question I see being asked is how Cosmos, Polkadot and Avalanche compare? Whilst there are similarities there are also a lot of differences. This article is not intended to be an extensive in-depth list, but rather an overview based on some of the criteria that I feel are most important. For a more in-depth view I recommend reading the articles for each of the projects linked above and coming to your own conclusions. I want to stress that it’s not a case of one platform being the killer of all other platforms, far from it. There won’t be one platform to rule them all, and too often the tribalism has plagued this space. Blockchains are going to completely revolutionise most industries and have a profound effect on the world we know today. It’s still very early in this space with most adoption limited to speculation and trading mainly due to the limitations of Blockchain and current iteration of Ethereum, which all three of these platforms hope to address. For those who just want a quick summary see the image at the bottom of the article. With that said let’s have a look

Scalability

Cosmos

Each Zone and Hub in Cosmos is capable of up to around 1000 transactions per second with bandwidth being the bottleneck in consensus. Cosmos aims to have thousands of Zones and Hubs all connected through IBC. There is no limit on the number of Zones / Hubs that can be created

Polkadot

Parachains in Polkadot are also capable of up to around 1500 transactions per second. A portion of the parachain slots on the Relay Chain will be designated as part of the parathread pool, the performance of a parachain is split between many parathreads offering lower performance and compete amongst themselves in a per-block auction to have their transactions included in the next relay chain block. The number of parachains is limited by the number of validators on the relay chain, they hope to be able to achieve 100 parachains.

Avalanche

Avalanche is capable of around 4500 transactions per second per subnet, this is based on modest hardware requirements to ensure maximum decentralisation of just 2 CPU cores and 4 GB of Memory and with a validator size of over 2,000 nodes. Performance is CPU-bound and if higher performance is required then more specialised subnets can be created with higher minimum requirements to be able to achieve 10,000 tps+ in a subnet. Avalanche aims to have thousands of subnets (each with multiple virtual machines / blockchains) all interoperable with each other. There is no limit on the number of Subnets that can be created.

Results

All three platforms offer vastly superior performance to the likes of Bitcoin and Ethereum 1.0. Avalanche with its higher transactions per second, no limit on the number of subnets / blockchains that can be created and the consensus can scale to potentially millions of validators all participating in consensus scores ✅✅✅. Polkadot claims to offer more tps than cosmos, but is limited to the number of parachains (around 100) whereas with Cosmos there is no limit on the number of hubs / zones that can be created. Cosmos is limited to a fairly small validator size of around 200 before performance degrades whereas Polkadot hopes to be able to reach 1000 validators in the relay chain (albeit only a small number of validators are assigned to each parachain). Thus Cosmos and Polkadot scores ✅✅
https://preview.redd.it/ththwq5qdhq51.png?width=1000&format=png&auto=webp&s=92f75152c90d984911db88ed174ebf3a147ca70d

Decentralisation

Cosmos

Tendermint consensus is limited to around 200 validators before performance starts to degrade. Whilst there is the Cosmos Hub it is one of many hubs in the network and there is no central hub or limit on the number of zones / hubs that can be created.

Polkadot

Polkadot has 1000 validators in the relay chain and these are split up into a small number that validate each parachain (minimum of 14). The relay chain is a central point of failure as all parachains connect to it and the number of parachains is limited depending on the number of validators (they hope to achieve 100 parachains). Due to the limited number of parachain slots available, significant sums of DOT will need to be purchased to win an auction to lease the slot for up to 24 months at a time. Thus likely to lead to only those with enough funds to secure a parachain slot. Parathreads are however an alternative for those that require less and more varied performance for those that can’t secure a parachain slot.

Avalanche

Avalanche consensus scan scale to tens of thousands of validators, even potentially millions of validators all participating in consensus through repeated sub-sampling. The more validators, the faster the network becomes as the load is split between them. There are modest hardware requirements so anyone can run a node and there is no limit on the number of subnets / virtual machines that can be created.

Results

Avalanche offers unparalleled decentralisation using its revolutionary consensus protocols that can scale to millions of validators all participating in consensus at the same time. There is no limit to the number of subnets and virtual machines that can be created, and they can be created by anyone for a small fee, it scores ✅✅✅. Cosmos is limited to 200 validators but no limit on the number of zones / hubs that can be created, which anyone can create and scores ✅✅. Polkadot hopes to accommodate 1000 validators in the relay chain (albeit these are split amongst each of the parachains). The number of parachains is limited and maybe cost prohibitive for many and the relay chain is a ultimately a single point of failure. Whilst definitely not saying it’s centralised and it is more decentralised than many others, just in comparison between the three, it scores ✅
https://preview.redd.it/lv2h7g9sdhq51.png?width=1000&format=png&auto=webp&s=56eada6e8c72dbb4406d7c5377ad15608bcc730e

Latency

Cosmos

Tendermint consensus used in Cosmos reaches finality within 6 seconds. Cosmos consists of many Zones and Hubs that connect to each other. Communication between 2 zones could pass through many hubs along the way, thus also can contribute to latency times depending on the path taken as explained in part two of the articles on Cosmos. It doesn’t need to wait for an extended period of time with risk of rollbacks.

Polkadot

Polkadot provides a Hybrid consensus protocol consisting of Block producing protocol, BABE, and then a finality gadget called GRANDPA that works to agree on a chain, out of many possible forks, by following some simpler fork choice rule. Rather than voting on every block, instead it reaches agreements on chains. As soon as more than 2/3 of validators attest to a chain containing a certain block, all blocks leading up to that one are finalized at once.
If an invalid block is detected after it has been finalised then the relay chain would need to be reverted along with every parachain. This is particularly important when connecting to external blockchains as those don’t share the state of the relay chain and thus can’t be rolled back. The longer the time period, the more secure the network is, as there is more time for additional checks to be performed and reported but at the expense of finality. Finality is reached within 60 seconds between parachains but for external ecosystems like Ethereum their state obviously can’t be rolled back like a parachain and so finality will need to be much longer (60 minutes was suggested in the whitepaper) and discussed in more detail in part three

Avalanche

Avalanche consensus achieves finality within 3 seconds, with most happening sub 1 second, immutable and completely irreversible. Any subnet can connect directly to another without having to go through multiple hops and any VM can talk to another VM within the same subnet as well as external subnets. It doesn’t need to wait for an extended period of time with risk of rollbacks.

Results

With regards to performance far too much emphasis is just put on tps as a metric, the other equally important metric, if not more important with regards to finance is latency. Throughput measures the amount of data at any given time that it can handle whereas latency is the amount of time it takes to perform an action. It’s pointless saying you can process more transactions per second than VISA when it takes 60 seconds for a transaction to complete. Low latency also greatly increases general usability and customer satisfaction, nowadays everyone expects card payments, online payments to happen instantly. Avalanche achieves the best results scoring ✅✅✅, Cosmos with comes in second with 6 second finality ✅✅ and Polkadot with 60 second finality (which may be 60 minutes for external blockchains) scores ✅
https://preview.redd.it/qe8e5ltudhq51.png?width=1000&format=png&auto=webp&s=18a2866104590f81a818690337f9121161dda890

Shared Security

Cosmos

Every Zone and Hub in Cosmos has their own validator set and different trust assumptions. Cosmos are researching a shared security model where a Hub can validate the state of connected zones for a fee but not released yet. Once available this will make shared security optional rather than mandatory.

Polkadot

Shared Security is mandatory with Polkadot which uses a Shared State infrastructure between the Relay Chain and all of the connected parachains. If the Relay Chain must revert for any reason, then all of the parachains would also revert. Every parachain makes the same trust assumptions, and as such the relay chain validates state transition and enables seamless interoperability between them. In return for this benefit, they have to purchase DOT and win an auction for one of the available parachain slots.
However, parachains can’t just rely on the relay chain for their security, they will also need to implement censorship resistance measures and utilise proof of work / proof of stake for each parachain as well as discussed in part three, thus parachains can’t just rely on the security of the relay chain, they need to ensure sybil resistance mechanisms using POW and POS are implemented on the parachain as well.

Avalanche

A subnet in Avalanche consists of a dynamic set of validators working together to achieve consensus on the state of a set of many blockchains where complex rulesets can be configured to meet regulatory compliance. So unlike in Cosmos where each zone / hub has their own validators, A subnet can validate a single or many virtual machines / blockchains with a single validator set. Shared security is optional

Results

Shared security is mandatory in polkadot and a key design decision in its infrastructure. The relay chain validates the state transition of all connected parachains and thus scores ✅✅✅. Subnets in Avalanche can validate state of either a single or many virtual machines. Each subnet can have their own token and shares a validator set, where complex rulesets can be configured to meet regulatory compliance. It scores ✅ ✅. Every Zone and Hub in cosmos has their own validator set / token but research is underway to have the hub validate the state transition of connected zones, but as this is still early in the research phase scores ✅ for now.
https://preview.redd.it/0mnvpnzwdhq51.png?width=1000&format=png&auto=webp&s=8927ff2821415817265be75c59261f83851a2791

Current Adoption

Cosmos

The Cosmos project started in 2016 with an ICO held in April 2017. There are currently around 50 projects building on the Cosmos SDK with a full list can be seen here and filtering for Cosmos SDK . Not all of the projects will necessarily connect using native cosmos sdk and IBC and some have forked parts of the Cosmos SDK and utilise the tendermint consensus such as Binance Chain but have said they will connect in the future.

Polkadot

The Polkadot project started in 2016 with an ICO held in October 2017. There are currently around 70 projects building on Substrate and a full list can be seen here and filtering for Substrate Based. Like with Cosmos not all projects built using substrate will necessarily connect to Polkadot and parachains or parathreads aren’t currently implemented in either the Live or Test network (Kusama) as of the time of this writing.

Avalanche

Avalanche in comparison started much later with Ava Labs being founded in 2018. Avalanche held it’s ICO in July 2020. Due to lot shorter time it has been in development, the number of projects confirmed are smaller with around 14 projects currently building on Avalanche. Due to the customisability of the platform though, many virtual machines can be used within a subnet making the process incredibly easy to port projects over. As an example, it will launch with the Ethereum Virtual Machine which enables byte for byte compatibility and all the tooling like Metamask, Truffle etc. will work, so projects can easily move over to benefit from the performance, decentralisation and low gas fees offered. In the future Cosmos and Substrate virtual machines could be implemented on Avalanche.

Results

Whilst it’s still early for all 3 projects (and the entire blockchain space as a whole), there is currently more projects confirmed to be building on Cosmos and Polkadot, mostly due to their longer time in development. Whilst Cosmos has fewer projects, zones are implemented compared to Polkadot which doesn’t currently have parachains. IBC to connect zones and hubs together is due to launch Q2 2021, thus both score ✅✅✅. Avalanche has been in development for a lot shorter time period, but is launching with an impressive feature set right from the start with ability to create subnets, VMs, assets, NFTs, permissioned and permissionless blockchains, cross chain atomic swaps within a subnet, smart contracts, bridge to Ethereum etc. Applications can easily port over from other platforms and use all the existing tooling such as Metamask / Truffle etc but benefit from the performance, decentralisation and low gas fees offered. Currently though just based on the number of projects in comparison it scores ✅.
https://preview.redd.it/rsctxi6zdhq51.png?width=1000&format=png&auto=webp&s=ff762dea3cfc2aaaa3c8fc7b1070d5be6759aac2

Enterprise Adoption

Cosmos

Cosmos enables permissioned and permissionless zones which can connect to each other with the ability to have full control over who validates the blockchain. For permissionless zones each zone / hub can have their own token and they are in control who validates.

Polkadot

With polkadot the state transition is performed by a small randomly selected assigned group of validators from the relay chain plus with the possibility that state is rolled back if an invalid transaction of any of the other parachains is found. This may pose a problem for enterprises that need complete control over who performs validation for regulatory reasons. In addition due to the limited number of parachain slots available Enterprises would have to acquire and lock up large amounts of a highly volatile asset (DOT) and have the possibility that they are outbid in future auctions and find they no longer can have their parachain validated and parathreads don’t provide the guaranteed performance requirements for the application to function.

Avalanche

Avalanche enables permissioned and permissionless subnets and complex rulesets can be configured to meet regulatory compliance. For example a subnet can be created where its mandatory that all validators are from a certain legal jurisdiction, or they hold a specific license and regulated by the SEC etc. Subnets are also able to scale to tens of thousands of validators, and even potentially millions of nodes, all participating in consensus so every enterprise can run their own node rather than only a small amount. Enterprises don’t have to hold large amounts of a highly volatile asset, but instead pay a fee in AVAX for the creation of the subnets and blockchains which is burnt.

Results

Avalanche provides the customisability to run private permissioned blockchains as well as permissionless where the enterprise is in control over who validates the blockchain, with the ability to use complex rulesets to meet regulatory compliance, thus scores ✅✅✅. Cosmos is also able to run permissioned and permissionless zones / hubs so enterprises have full control over who validates a blockchain and scores ✅✅. Polkadot requires locking up large amounts of a highly volatile asset with the possibility of being outbid by competitors and being unable to run the application if the guaranteed performance is required and having to migrate away. The relay chain validates the state transition and can roll back the parachain should an invalid block be detected on another parachain, thus scores ✅.
https://preview.redd.it/7phaylb1ehq51.png?width=1000&format=png&auto=webp&s=d86d2ec49de456403edbaf27009ed0e25609fbff

Interoperability

Cosmos

Cosmos will connect Hubs and Zones together through its IBC protocol (due to release in Q1 2020). Connecting to blockchains outside of the Cosmos ecosystem would either require the connected blockchain to fork their code to implement IBC or more likely a custom “Peg Zone” will be created specific to work with a particular blockchain it’s trying to bridge to such as Ethereum etc. Each Zone and Hub has different trust levels and connectivity between 2 zones can have different trust depending on which path it takes (this is discussed more in this article). Finality time is low at 6 seconds, but depending on the number of hops, this can increase significantly.

Polkadot

Polkadot’s shared state means each parachain that connects shares the same trust assumptions, of the relay chain validators and that if one blockchain needs to be reverted, all of them will need to be reverted. Interoperability is enabled between parachains through Cross-Chain Message Passing (XCMP) protocol and is also possible to connect to other systems through bridges, which are specifically designed parachains or parathreads that each are custom made to interact with another ecosystem such as Ethereum and Bitcoin. Finality time between parachains is around 60 seconds, but longer will be needed (initial figures of 60 minutes in the whitepaper) for connecting to external blockchains. Thus limiting the appeal of connecting two external ecosystems together through Polkadot. Polkadot is also limited in the number of Parachain slots available, thus limiting the amount of blockchains that can be bridged. Parathreads could be used for lower performance bridges, but the speed of future blockchains is only going to increase.

Avalanche

A subnet can validate multiple virtual machines / blockchains and all blockchains within a subnet share the same trust assumptions / validator set, enabling cross chain interoperability. Interoperability is also possible between any other subnet, with the hope Avalanche will consist of thousands of subnets. Each subnet may have a different trust level, but as the primary network consists of all validators then this can be used as a source of trust if required. As Avalanche supports many virtual machines, bridges to other ecosystems are created by running the connected virtual machine. There will be an Ethereum bridge using the EVM shortly after mainnet. Finality time is much faster at sub 3 seconds (with most happening under 1 second) with no chance of rolling back so more appealing when connecting to external blockchains.

Results

All 3 systems are able to perform interoperability within their ecosystem and transfer assets as well as data, as well as use bridges to connect to external blockchains. Cosmos has different trust levels between its zones and hubs and can create issues depending on which path it takes and additional latency added. Polkadot provides the same trust assumptions for all connected parachains but has long finality and limited number of parachain slots available. Avalanche provides the same trust assumptions for all blockchains within a subnet, and different trust levels between subnets. However due to the primary network consisting of all validators it can be used for trust. Avalanche also has a much faster finality time with no limitation on the number of blockchains / subnets / bridges that can be created. Overall all three blockchains excel with interoperability within their ecosystem and each score ✅✅.
https://preview.redd.it/l775gue3ehq51.png?width=1000&format=png&auto=webp&s=b7c4b5802ceb1a9307bd2a8d65f393d1bcb0d7c6

Tokenomics

Cosmos

The ATOM token is the native token for the Cosmos Hub. It is commonly mistaken by people that think it’s the token used throughout the cosmos ecosystem, whereas it’s just used for one of many hubs in Cosmos, each with their own token. Currently ATOM has little utility as IBC isn’t released and has no connections to other zones / hubs. Once IBC is released zones may prefer to connect to a different hub instead and so ATOM is not used. ATOM isn’t a fixed capped supply token and supply will continuously increase with a yearly inflation of around 10% depending on the % staked. The current market cap for ATOM as of the time of this writing is $1 Billion with 203 million circulating supply. Rewards can be earnt through staking to offset the dilution caused by inflation. Delegators can also get slashed and lose a portion of their ATOM should the validator misbehave.

Polkadot

Polkadot’s native token is DOT and it’s used to secure the Relay Chain. Each parachain needs to acquire sufficient DOT to win an auction on an available parachain lease period of up to 24 months at a time. Parathreads have a fixed fee for registration that would realistically be much lower than the cost of acquiring a parachain slot and compete with other parathreads in a per-block auction to have their transactions included in the next relay chain block. DOT isn’t a fixed capped supply token and supply will continuously increase with a yearly inflation of around 10% depending on the % staked. The current market cap for DOT as of the time of this writing is $4.4 Billion with 852 million circulating supply. Delegators can also get slashed and lose their DOT (potentially 100% of their DOT for serious attacks) should the validator misbehave.

Avalanche

AVAX is the native token for the primary network in Avalanche. Every validator of any subnet also has to validate the primary network and stake a minimum of 2000 AVAX. There is no limit to the number of validators like other consensus methods then this can cater for tens of thousands even potentially millions of validators. As every validator validates the primary network, this can be a source of trust for interoperability between subnets as well as connecting to other ecosystems, thus increasing amount of transaction fees of AVAX. There is no slashing in Avalanche, so there is no risk to lose your AVAX when selecting a validator, instead rewards earnt for staking can be slashed should the validator misbehave. Because Avalanche doesn’t have direct slashing, it is technically possible for someone to both stake AND deliver tokens for something like a flash loan, under the invariant that all tokens that are staked are returned, thus being able to make profit with staked tokens outside of staking itself.
There will also be a separate subnet for Athereum which is a ‘spoon,’ or friendly fork, of Ethereum, which benefits from the Avalanche consensus protocol and applications in the Ethereum ecosystem. It’s native token ATH will be airdropped to ETH holders as well as potentially AVAX holders as well. This can be done for other blockchains as well.
Transaction fees on the primary network for all 3 of the blockchains as well as subscription fees for creating a subnet and blockchain are paid in AVAX and are burnt, creating deflationary pressure. AVAX is a fixed capped supply of 720 million tokens, creating scarcity rather than an unlimited supply which continuously increase of tokens at a compounded rate each year like others. Initially there will be 360 tokens minted at Mainnet with vesting periods between 1 and 10 years, with tokens gradually unlocking each quarter. The Circulating supply is 24.5 million AVAX with tokens gradually released each quater. The current market cap of AVAX is around $100 million.

Results

Avalanche’s AVAX with its fixed capped supply, deflationary pressure, very strong utility, potential to receive air drops and low market cap, means it scores ✅✅✅. Polkadot’s DOT also has very strong utility with the need for auctions to acquire parachain slots, but has no deflationary mechanisms, no fixed capped supply and already valued at $3.8 billion, therefore scores ✅✅. Cosmos’s ATOM token is only for the Cosmos Hub, of which there will be many hubs in the ecosystem and has very little utility currently. (this may improve once IBC is released and if Cosmos hub actually becomes the hub that people want to connect to and not something like Binance instead. There is no fixed capped supply and currently valued at $1.1 Billion, so scores ✅.
https://preview.redd.it/zb72eto5ehq51.png?width=1000&format=png&auto=webp&s=0ee102a2881d763296ad9ffba20667f531d2fd7a
All three are excellent projects and have similarities as well as many differences. Just to reiterate this article is not intended to be an extensive in-depth list, but rather an overview based on some of the criteria that I feel are most important. For a more in-depth view I recommend reading the articles for each of the projects linked above and coming to your own conclusions, you may have different criteria which is important to you, and score them differently. There won’t be one platform to rule them all however, with some uses cases better suited to one platform over another, and it’s not a zero-sum game. Blockchain is going to completely revolutionize industries and the Internet itself. The more projects researching and delivering breakthrough technology the better, each learning from each other and pushing each other to reach that goal earlier. The current market is a tiny speck of what’s in store in terms of value and adoption and it’s going to be exciting to watch it unfold.
https://preview.redd.it/fwi3clz7ehq51.png?width=1388&format=png&auto=webp&s=c91c1645a4c67defd5fc3aaec84f4a765e1c50b6
xSeq22x your post has been copied because one or more comments in this topic have been removed. This copy will preserve unmoderated topic. If you would like to opt-out, please send a message using [this link].
submitted by anticensor_bot to u/anticensor_bot [link] [comments]

How DAO users can truly control their voting rights

How DAO users can truly control their voting rights
https://blockchaintopbuzz.medium.com/how-dao-users-can-truly-control-their-voting-rights-f945c9c6b65e
Aelf proposed a solution that gives the control of the voting rights back to users by classifying token permissions.
As of today, there are still few complete businesses. In addition to mining and building trading platforms, it is difficult to create a complete business model. Moreover, various trading platforms have gradually grown into enterprises with comprehensive products in the blockchain industry, including wallets, nodes, lending, mining pools, etc.
At the same time, cloud services can reduce the cost of building small exchanges, but they can also lead to big trading platforms monopolizing data. For example, some Internet companies provide free cloud services in order to collect more valuable data.
Currently, Ethereum, which has the richest DeFi ecosystem, is gradually upgrading to V2.0, and its consensus protocol will also be upgraded to PoS. Governance voting can be regarded as the most important feature in the PoS ecosystem.
This year, Yearn.Finance rose to sudden prominence. But due to the governance problem, its community members initiated a hard fork, resulting in YFII. Another DeFi project, YAM, had a unfixable rebase function error. The founding team apologized for the error and announced a ‘Migration Plan’, which will turn the project over to the community.
For a while, governance voting became all the rage. However, the increasingly bigger trading platforms have been criticized by users in governance voting. Is there a proper solution to handling the relationship between the trading platform and governance voting?

What will we lose when trading platforms monopolize the blockchain industry?

In June 2018, during the BP node election before the EOS mainnet launch, node voting began to have a crisis of confidence between token holders and the trading platform. it is widely believed that the top 20 holders of trading platform wallets held about 40% of all the EOS in circulation.
Since then, many trading platforms have enabled the “User Authorization” interface. EOS holders can authorize the token voting rights to the trading platform, who will vote on behalf of the users. The rule caused a backlash from users, forcing these trading platforms to change the rule immediately so that EOS holders could vote on their preferred BP nodes.
After the EOS BP node votes, whether the trading platform has the token voting right has been occasionally discussed, but fewhave noticed it.
Two years later, Justin Sun, founder of TRON, made a commercial acquisition of Steemit, a decentralized social networking platform. After the acquisition was announced, the Steemit community launched a soft fork to resist the project being controlled by TRON. However, Justin Sun voted with the support of trading platforms such as Binance, Huobi and Poloniex to prevent a soft fork.
After being questioned by users, Binance and Huobi said that they would no longer interfere in the voting of the Steemit community. However, hkdev 404 of the Steem community again reveived votes from Huobi accounts. It is said that nearly 40 million votes were cast during the incident, accounting for about 10% of the total circulation of STEEM tokens.
There is no doubt that when the trading platform monopolizes the industry, we will lose our voting right.
How do we defend our voting rights
The fact that the ownership of the tokens belongs to the holders is indisputable, but what about the voting rights of the tokens deposited on the trading platform? How can we defend our voting rights after trading platforms have monopolized the industry?

Trading Platform Model

Traditional centralized trading platforms will assign to each user a separate deposit address. After depositing, the depositedamount will be added into the cold wallet and hot wallet. When users want to withdraw their tokens, the trading platform will transfer the tokens out of the hot wallet. If there is insufficient balance in the hot wallet, then the tokens will be transferred from the cold wallet to the hot wallet, and then be withdrawn.
Under the traditional centralized trading platform model, once users transfer their tokens into a trading platform, it means thetoken ownership (including voting rights) is also transferred to that trading platform.
The aelf solution: classify token permissions and claim back voting rights
For the issue of “voting rights” between token holders and centralized trading platforms, aelf, a decentralized cloud computing blockchain network, has proposed a solution: to establish an aelf Centre Asset Management Contract on the chain. The contract can limit the funds entering the exchange and define different permissions to control the assets.
The main feature of the aelf Centre Asset Management Contract is to create the “Main Virtual Address of the Trading Platform”.
Each exchange has a main virtual address, which can only be used for transfer operation, but not for voting, trading and other operations. As a result, the exchange cannot misappropriate users’ assets for voting. At the same time, the assets of the primary virtual address are publicly available on the chain, which makes it more difficult for the exchange to misappropriate assets.
At the same time, the aelf Centre Asset Management Contract also has the function of “address definition”. The exchange can open different permissions to different addresses, such as opening different permissions according to the amount, transactions exceeding a certain amount can only be given the greenlight by using multiple signatures, and the assets can be frozen through the contract when the assets of the trading platform are stolen, etc.
For the users of the trading platform, the access of the trading platform to the aelf Center Asset Management Contract function will not undermine user experience. The virtual system address of the aelf Center Asset Management Contract will assign a virtual address to each user, which offers the same user experience as the traditional mode.
For the trading platform, each deposit address constructed by the virtual address system is generated by the algorithm and does not need to be carried out on the blockchain. This means that the trading platform does not need to manage a large number of private keys, and there is no risk that the private keys will be lost.
On the most important “voting rights” issue, the aelf Center Asset Management Contract will assign to each user a separate virtual address for voting:
Voting address = Hash (Exchange Main Address + Token + “VOTE”)
Voting process: the tokens are transferred from the main virtual address of the exchange to the special “voting address” for voting, and are then voted. After voting, the tokens are withdrawn from the voting address back to the main virtual address.
We can see that the aelf Centre Asset Management Contract proposed by aelf can improve the efficiency of the trading platform without affecting user experience. In addition, it solves the problem that users would lose their voting rights.
According to the data on Crypto Mode, the market value of PoS tokens has exceeded $33 billion without counting Ethereum. In the field of crypto, it is the biggest ecosystem next to Bitcoin. The most important function of PoS is vote staking. faced with bigtrading platforms, if the status quo continues, retail investors will gradually lose their “voting rights” that belong to them.

Comparison of Market Value of PoS tokens (Source: Crypto Mode)
The emergence of DAO offers an alternative to trading platforms who misappropriate users’ tokens, but it still can not change this situation. Of course, DAO will not die out. Small communities will still use DAO for community governance. The idea behind the design of aelf is to start from the underlying trading platform and solve this issue at the source. Whether the solution can work still takes time. However, as a member of the crypto industry, we should understand the importance of “voting rights”, and cannot allow the exchange to seize our rights at will.
Recently, aelf has also announced its DeFi plan, which includes a new blockchain 3.0 project with a large number of new technical features, such as cross chain function, virtual address and cloud services. Aelf also proposed a set of interoperability solutions with ERC-20 tokens. It can directly access the ETH ecosystem, allow ETH-based applications and wallets to directly access it, and maintain the interoperability with ETH. And aelf will provide a high-performance smart contract operation platform and cloud services that can support cross chain interaction. Users on major cloud servers can easily run aelf’s services and adjust the scale of cloud according to their own business needs.
The implementation of a slew of tools, cloud services and interoperability solutions developed by aelf means that centralized transactions can be directly connected to the aelf network, realizing one-click adaptation to the DeFi ecosystem. With aelf, CeFi and DeFi are able to learn from and complement each other.
submitted by Floris-Jan to aelfofficial [link] [comments]

Monthly Nano News: December 2019 + Year Recap Special

This is what NANO has been up to lately. I don't think I lie if I say it has been quite an amazing year!
See you soon and happy new year! Something nice is coming soon that I have been working on for a while, stay tuned..

December 2019

November 2019

October 2019

September 2019

August 2019

July 2019

June 2019

May 2019

Apr 2019

Mar 2019

Feb 2019

Jan 2019


More news here: https://nanolinks.info/news

https://preview.redd.it/9sw5nkoxlt741.png?width=749&format=png&auto=webp&s=3426d4eafb9430c0304a6d161596102536df4318
submitted by Joohansson to nanocurrency [link] [comments]

Update TKEYSPACE 1.3.0 on Android

Update TKEYSPACE 1.3.0 on Android

https://preview.redd.it/6w93e0afttx41.png?width=1400&format=png&auto=webp&s=c00989612ec2d52eb522405e6b6a98bf875e08bb
Version 1.3.0 is a powerful update to TkeySpace that our team has been carefully preparing. since version 1.2.0, we have been laying the foundation for implementing new features that are already available in the current version.
Who cares about the security and privacy of their assets is an update for you.
TkeySpace — was designed to give You full control over your digital assets while maintaining an exceptional level of security, which is why there is no personal data in the wallet: phone number, the email address that could be compromised by hackers — no identity checks and other hassles, just securely save the backup phrase consisting of 12 words.

Briefly about the TkeySpace 1.3.0 update :

  • Code optimization and switching to AndroidX;
  • New section-Privacy;
  • Built-in TOR;
  • Selecting the privacy mode;
  • Selecting the recovery method for each currency;
  • Choosing the address format for Litecoin;
  • Enhanced validation of transactions and blocks in the network;
  • Disk space optimization;
  • Accelerated syncing;
  • Checking “double spending”;
  • The bloom filter to check for nodes;
  • Updating the Binance and Ethereum libraries;
  • A function to hide the balance;
  • Advanced currency charts;
  • Access to charts without authentication;
  • News section;
  • Browser for Tkeycoin;
  • Independent Commission entry for Bitcoin;
  • New digital currencies;
  • Digital currency exchange tab.

Code optimization and switching to AndroidX

A lot of work has been done on optimizing the code to speed up the application, improving the logic, synchronization speed, calculating the hash of cryptocurrencies, and successfully switching to AndroidX.

https://preview.redd.it/h3go5tzgttx41.png?width=1100&format=png&auto=webp&s=bf311efc73e3577c80f06a21d6b9317bb93ae989

New section: Privacy

  • Enable Tor;
  • Blockchain transaction (the selection of the privacy mode);
  • Blockchain recovery (choosing a recovery method);
https://preview.redd.it/iydfwuhittx41.png?width=1080&format=png&auto=webp&s=2ce7c489d893a2ab6b9d6fede57d8b94404edcfb

TOR

Starting with the current update, the TkeySpace wallet can communicate via the TOR network, includes new privacy algorithms, and supports 59 different currencies.

https://i.redd.it/kn5waeskttx41.gif
Tor is a powerful privacy feature for those who own large assets or live in places where the Internet is heavily censored.
Tor technology provides protection against traffic analysis mechanisms that compromise not only Internet privacy, but also the confidentiality of trade secrets, business contacts, and communications in General.
When you enable TOR settings, all outgoing traffic from the wallet will be encrypted and routed through an anonymous network of servers, periodically forming a chain through the Tor network, which uses multi-level encryption, effectively hiding any information about the sender: location, IP address, and other data.
This means that if your provider blocks the connection, you can rest easy — after all, by running this function, you will get an encrypted connection to the network without restrictions.

https://preview.redd.it/w9y3ax4mttx41.png?width=960&format=png&auto=webp&s=972e375fc26d479e8b8d2999f7659ec332e2af55
In TOR mode, the wallet may work noticeably slower and in some cases, there may be problems with the network, due to encryption, some blockchain browsers may temporarily not work. However, TOR encryption is very important when Internet providers completely block traffic and switching to this mode, you get complete freedom and no blocks for transactions.

Confidentiality of transactions (the Blockchain transaction)

The wallet can change the model of a standard transaction, mixing inputs and outputs, making it difficult to identify certain cryptocurrencies. In the current update, you can select one of several modes for the transaction privacy level: deterministic lexicographic sorting or shuffle mode.

Mode: Lexicographic indexing

Implemented deterministic lexicographic sorting using hashes of previous transactions and output indexes for sorting transaction input data, as well as values and scriptPubKeys for sorting transaction output data;
We understand that information must remain confidential not only in the interests of consumers but also in higher orders, financial systems must be kept secret to prevent fraud. One way to address these privacy shortcomings is to randomize the order of inputs and outputs.
Lexicographic ordering is a comparison algorithm used to sort two sets based on their Cartesian order within their common superset. Lexicographic order is also often referred to as alphabetical order or dictionary order. The hashes of previous transactions (in reverse byte order) are sorted in ascending order, lexicographically.
In the case of two matching transaction hashes, the corresponding previous output indexes will be compared by their integer value in ascending order. If the previous output indexes match, the input data is considered equal.

Shuffle Mode: mixing (random indexing)

To learn more about how “shuffle mode” works, we will first analyze the mechanisms using the example of a classic transaction. Current balance Of your wallet: 100 TKEY, coins are stored at different addresses:
x1. Address-contains 10 TKEY. x2. Address-contains 20 TKEY. x3. Address-contains 30 TKEY. x4. Address-contains 15 TKEY. x5. Address-contains 25 TKEY.
Addresses in the blockchain are identifiers that you use to send cryptocurrency to another person or to receive digital currency.
In a classic transaction, if you need to send, for example, 19 TKEY — 100 TKEY will be sent to the network for “melting” coins, 19 TKEY will be sent to the Recipient, and ~80.9 TKEY will return to the newly generated address for “change” in your wallet.

https://preview.redd.it/x595qwdottx41.png?width=806&format=png&auto=webp&s=d9c2ae5620a3410ed83f7e16c018165c8ab35844
In the blockchain explorer, you will see the transaction amount in the amount of 100 TKEY, where 80.99999679 TKEY is your change, 19 TKEY is the amount you sent and 0.00000321 is the transaction fee. Thus, in the blockchain search engine, most of your balance is shown in the transaction.

How does the shuffle mode work?

Let’s look at a similar example: you have 100 TKEY on your balance, and you need to send 19 TKEY.
x1. Address-contains 10 TKEY. x2. Address-contains 20 TKEY. x3. Address-contains 30 TKEY. x4. Address-contains 15 TKEY. x5. Address-contains 25 TKEY.
You send 19 TKEY, the system analyzes all your addresses and balances on them and selects the most suitable ones for the transaction. To send 19 TKEY, the miners will be given coins with x2. Addresses, for a total of 20 TKEY. Of these, 19 TKEY will be sent to the recipient, and 0.99999679 TKEY will be returned to Your new address as change minus the transaction fee.

https://preview.redd.it/doxmqffqttx41.png?width=1400&format=png&auto=webp&s=5c99ec41363fe50cd651dc0acab05e175416006a
In the blockchain explorer, you will see the transaction amount in the amount of 20 TKEY, where 0.99999679 TKEY is Your change, 19 TKEY is the amount you sent and 0.00000321 is the transaction fee.
The shuffle mode has a cumulative effect. with each new transaction, delivery Addresses will be created and the selection of debit addresses/s that are most suitable for the transaction will change. Thus, if you store 1,000,000 TKEY in your wallet and want to send 1 TKEY to the recipient, the transaction amount will not display most of your balance but will select 1 or more addresses for the transaction.

Selecting the recovery method for each digital currency (Blockchain restore)

Now you can choose the recovery method for each currency: API + Blockchain or blockchain.
Note: This is not a syncing process, but rather the choice of a recovery method for your wallet. Syncing takes place with the blockchain — regardless of the method you choose.
https://preview.redd.it/gxsssuxrttx41.png?width=1080&format=png&auto=webp&s=cd9fe383618dda0e990e86485652ff95652a8481

What are the differences between recovery methods?

API + Blockchain

In order not to load the entire history of the blockchain, i.e. block and transaction headers, the API helps you quickly get point information about previous transactions. For example, If your transactions are located in block 67325 and block 71775, the API will indicate to the node the necessary points for restoring Your balance, which will speed up the “recovery” process.
As soon as the information is received, communication with the peers takes place and synchronization begins from the control point, then from this moment, all subsequent block loading is carried out through the blockchain. This method allows you to quickly restore Your existing wallet.
‘’+’’ Speed.
‘’-’’ The API server may fail.

Blockchain

This method loads all block headers (block headers + Merkle) starting from the BIP44 checkpoint and manually validates transactions.
‘’+’’ It always works and is decentralized. ‘’-’’ Loading the entire blockchain may take a long time.

Why do I need to switch the recovery method?

If when creating a wallet or restoring it, a notification (!) lights up in red near the selected cryptocurrency, then most likely the API has failed, so go to SettingsSecurity CenterPrivacyBlockchain Restore — switch to Blockchain. Syncing will be successful.

Selecting the address format

You can choose the address format not only for Bitcoin but also for Litecoin. Legacy, SegWit, Native SegWit. Go to SettingsManage WalletsAddress Format.

https://preview.redd.it/nqj0nwutttx41.png?width=1080&format=png&auto=webp&s=fc04b8ee8339ab27d3203ff551013cda7aa9e8db

Working at the code level

Enhanced validation of transactions and blocks in the network

Due to the increased complexity in the Tkeycoin network, we have implemented enhanced validation of the tkeycoin consensus algorithm, and this algorithm is also available for other cryptocurrencies.

What is the advantage of the enhanced validation algorithm for the user

First, the name itself speaks for itself — it increases the security of the network, and second, by implementing the function — we have accelerated the work of the TkeySpace blockchain node, the application consumes even fewer resources than before.
High complexity is converted to 3 bytes, which ensures fast code processing and the least resource consumption on your device.

Synchronization

The synchronization process has been upgraded. Node addresses are added to the local storage, and instant synchronization with nodes occurs when you log in again.

Checking for double-spending

TkeySpace eliminates “double-spending” in blockchains, which is very valuable in the Bitcoin and Litecoin networks.
For example, using another application, you may be sent a fake transaction, and the funds will eventually disappear from the network and your wallet because this feature is almost absent in most applications.
Using TkeySpace — you are 100% sure that your funds are safe and protected from fraudulent transactions in the form of “fake” transactions.

The bloom filter to check for nodes

All nodes are checked through the bloom filter. This allows you to exclude fraudulent nodes that try to connect to the network as real nodes of a particular blockchain.
In practice, this verification is not available in applications, Tkeycoin — decided to follow a new trend and change the stereotypes, so new features such as node verification using the bloom filter and double-spending verification are a kind of innovation in applications that work with cryptocurrencies.

Updating the Binance and Ethereum libraries

Updated Binance and Ethereum libraries for interaction with the TOR network.

Interface

Function — to hide the balance

This function allows you to hide the entire balance from the main screen.

Advanced currency charts and charts without authentication

Detailed market statistics are available, including volumes, both for 1 day and several years. Select the period of interest: 1 day, 7 days, 1 month, 3 months, 6 months, 1 year, 2 years.
In version 1.3.0, you can access charts without authentication. You can monitor the cryptocurrency exchange rate without even logging in to the app. If you have a pin code for logging in, when you open the app, swipe to the left and you will see a list of currencies.

https://preview.redd.it/f3thqv1wttx41.png?width=1080&format=png&auto=webp&s=1906307f7ad1fd6db47bf270ce7c57185267b1a3

News

In the market data section — in the tkeyspace added a section with current news of the cryptocurrency market.

https://preview.redd.it/lz1e7ynxttx41.png?width=1080&format=png&auto=webp&s=b6f1858d8752cfc6187df5d7b8a2ce25813e2366

Blockchain Explorer for Tkeycoin

Transaction verification for Tkeycoin is now available directly in the app.

Independent Commission entry for Bitcoin

Taking into account the large volume of the Bitcoin network, we have implemented independent Commission entry — you can specify any Commission amount.
For other currencies, smart Commission calculation is enabled based on data from the network. The network independently regulates the most profitable Commission for the sender.

New digital currencies

The TkeySpace wallet supports +59 cryptocurrencies and tokens.

Cryptocurrencies

Tkeycoin (TKEY), Bitcoin (BTC), Litecoin (LTC), Ethereum (ETH), Bitcoin Cash (BCH), DASH, Binance (BNB), EOS.

Stablecoins

TrueUSD (TUSD), Tether USD (USDT), USD Coin (USDC), Gemini Dollar (GUSD), STASIS EURO (EURS), Digix Gold Token (DGX), Paxos Standard (PAX), PAX Gold (PAXG), Binance USD (BUSD), EOSDT, Prospectors Gold (PGL).

ERC-20, BEP2, and EOS tokens

Newdex (NDX), DigixDAO ERC-20 (DGD), Chainlink ERC-20 (LINK), Decentraland ERC-20 (MANA), EnjinCoin ERC-20 (ENJ), the Native Utility (NUT), 0x Protocol ERC-20 (ZRX), Aelf ERC-20 (ELF), Dawn DAO ERC-20 (AURA), Cashaaa BEP2 (CAS), Bancor ERC-20 (BNT), the Basic Attention Token ERC-20 (BAT), Golem ERC-20 (GNT), Mithril ERC-20 (MITH), MEETONE, NEXO ERC-20, Holo ERC-20 (HOT), Huobi Token ERC-20 (HT), IDEX ERC-20, IDEX Membership ERC-20 (IDXM), Bitcoin BEP2 (BTCB), Waltonchain ERC-20 (WTC), KuCoin Shares ERC-20 (KCS), Kyber Network Crystal ERC-20 (KNC), Loom Network ERC-20 (LOOM), Ripple (XRP), Everipedia (IQ), Loopring ERC-20 (LRC), Maker ERC-20 (MKR), the Status of the ERC-20 (SNT), Ankr Network BEP2 (ANKR), OmiseGO ERC-20 (OMG), ^ american English ERC-20 (^american English), Polymath ERC-20 (POLY), Populous ERC-20 (PPT), Pundi X ERC-20 (NPXS), Parser ERC-20 (REP), Revain ERC-20 (R), Binance ERC20 (BNB-ERC20), Gifto BEP2 (GTO).

Exchange of cryptocurrency

The “Limitless Crypto Exchange” tab is available for a quick transition to an unlimited exchange in 200 digital currencies — 10,000 currency pairs.

How do I update TkeySpace to version 1.3.0?

  1. Go to Google Play on your device — My apps and games — find TkeySpace in the list of apps — click Update.
  2. Go to Google Play on your device-write TkeySpace in the search — click on the app icon — Update.
After the update, you will need to restore your wallet.
submitted by tkeycoin to Tkeycoin_Official [link] [comments]

Watch out for ICON (ICX)

The objective of this post is to share rich yet simple information about ICON (ICX) so that an average Crypto investor can understand the future potential of ICON. Disclaimer – I am a big ICON fan and have done extensive research on ICON over the last 3 months but not related to the team in anyway.
Simply put, ICON is a massive scale blockchain platform that allows –
  1. Decentralized Application (DAPPS) – Build DAPPS on ICON Platform like on Ethereum and NEO. Yes, soon, you will see ICOs happening on ICON platform for different DAPPS
  2. Interchain (Interoperability with Blockchains) – Allows different blockchains connecting to one another through their protocol. ICON is fully compatible with traditional blockchains like Bitcoin and Ethereum and in future can bridge other public blockchains such as Qtum, NEO and many others to achieve their mission statement – “Hyperconnect the world”
  3. Artificial Intelligence (AI) – Use of AI to ensure all nodes contributing to ICON Republic/platform are rewarded fairly and not to have certain powers over distribution policies. AI will continue to learn a variety of variables to determine optimal distribution policies and achieve complete decentralization.
  4. Decentralized Exchange (DEX) – ICON will integrate different DEX protocols on their platform to facilitate exchange of ICX and other future ICON platform currencies. Bancor protocol will be their first DEX protocol when mainent launches this month end and Kyber and others will follow. Not just throwing Kyber’s name out there, it was confirmed they are working with each other, official partnership yet to be announced.
You can also check ICON’s comparison with Ether and EOS on their website to learn more about its unique technical capabilities.
ICON’s credentials and why it can become the biggest blockchain in the world (In my humble opinion):
  1. ICON is started by a Korean fintech company Dayli Financial Group, which is currently valued at $4 billion. Dayli was formerly known as Yello Financial Group. Dayli is now established as the market leader in Korea with the largest blockchain network, with over 40 organizations in the financial services, insurance, education, artifiical intelligence, cryptocurrency and hospital space. They are trying to bring all this together through ICON. Btw, Dayli also owns Coinone, one of the leading cryptocurrency exchanges in the world with ~ 800 Million in daily trading volume and the first exchange to introduce Ethereum to South Korea.
  2. An experienced and 31 member dedicated team - 6 foundation council members who are also the founders of Dayli : ) This is how much ICON means to them. 15 blockchain developers and product managers, 5 Artificial intelligence specialists, 5 marketing, design and security specialists – a total of 31 member dedicated team at the time of ICO, which will grow many folds in the future. This team is supported by 8 world class advisors, including Don Tapascott, who visited Seoul to work with the team and other 100 employees of Dayli Financial. All employee bios can be accessed on ICON website.
  3. ICON project has been under development for over 2 years now, under TheLOOP and has real world applications. Loopchain is a distributed ledger that provides industry specific blockchain solutions The first production blockchain service, a KYC authentication platform, was launched in August 2017 with 25 securities firms. Check out their website to look at their impressive partners – Samsung, Kyobo, Meritz and many more. ICON also has Artifiical intelligence in house capability under the company DaVinci, which will support the development of the main platform. Read more about it on Davinci website.
  4. ICON has developed its own blockchain protocol called LFT (Loop Fault Tolerance), which is an enhanced BFT (Byzantine Fault Tolerance)32-based algorithm that promotes faster consensus and ensures the finality of the consensus without the possibility of forks within the network
  5. South Korea is ranked top 5 in ICT (Information and Communication Technologies) and the 11th largest economy in the world. South Koreans also have immense interest in the crypto space, where daily trading account for ~20-40% of total global volume. Most consider cryptocurrencies as an investment vehicle rather than payment solution or functional blockchain platforms. It’ll be interesting to see when one of their own public blockchain introduced in the country, how sectors from different industries come up with new use cases, and actual form of payment adapted by end consumers.
  6. Key Partnerships - 3 top Korean universities, Woori bank developing their digital coin(leading Korean bank), Daishain Securities, Chain ID for Kofia, SBI Ripple Asia parternship, DAVinCI selected as AI Solution Partner for Carnegie Mellon University x Emirate Hackathon. ( Will keep this up to date)
What’s next
  1. ICON (ICX) started trading on Binance this morning and will get listed on all the major exchanges soon. OkEx tomorrow.
  2. Testnet is already launched and Mainnet is expected to launch by end of this month – mid of January. Native ICX wallets for each platform (Web, desktop, IOS and Android) and DEX will also launch around the same time. Pro tip - Get ICON before this launch ; )
  3. Detailed roadmap for next year can be accessed through their website.
Final words – ICON has real contractual partnerships in place, with many more to come and a solid/dedicated team with big corporate backing to take ICON platform to the next level. These guys mean business. I strongly believe ICX will be one of the 10 Cryptocurrencies by end of 2018. Hope you found this post helpful. Cheers.
Edits - Formatting and grammar.
submitted by Gav-N to CryptoCurrency [link] [comments]

Cosmos — an early in-depth analysis at the ecosystem of connected blockchains — Part One

Cosmos — an early in-depth analysis at the ecosystem of connected blockchains — Part One
This is part one of three articles where i will discuss what i have learnt whilst looking into Cosmos. I will provide links throughout the article to provide reference to sections as well as a list of sources at the bottom of the article for you to look into specific areas in more detail if required. Hopefully it will be useful for those interested in learning more about the project.
Cosmos is still very early in development process with components such as IBC which connects two blockchains together currently in research / specification stage, as a result can change by the time its released.

What is Cosmos?

Cosmos is a network and a framework for interoperability between blockchains. The zones are powered by Tendermint Core, which provides a high-performance, consistent, secure PBFT-like consensus engine, where strict fork-accountabilityguarantees hold over the behaviour of malicious actors. Cosmos is not a product but an ecosystem built on a set of modular, adaptable and interchangeable tools.
In Tendermint, consensus nodes go through a multi-round voting proposal process first before coming to consensus on the contents of a block. When 2/3 of those nodes decide on a block, then they run it through the state transition logic providing instant finality. In current proof of work consensus for Ethereum, the consensus process is inverted, where miners pick the transactions to include in a block, run state updates, then do “work” to try and mine the block.
Tendermint BFT can handle up to thousands of transactions per second (depending on the number of validators). However, this only takes into account the consensus part, the application layer is the limiting factor though. Ethermint (described below) has achieved up to 200 tps to give you an idea of the speed available per blockchain which is significantly more than current versions of Ethereum and Bitcoin etc.
The Tendermint consensus is used in a wide variety of projects, some of the most notable include Binance Chain, Hyperledger Burrow. It’s important to note though that just using Tendermint consensus doesn’t mean they can connect to other chains with the cosmos ecosystem, they would need to fork their code to implement IBC as a native protocol to allow interoperability through IBC.
see https://raw.githubusercontent.com/devcorn/hackatom/mastetminfo.pdf for high res

The Tendermint consensus algorithm follows a traditional approach which relies on all validators to communicate with one another to reach consensus. Because of the communication overhead, it does not scale to 1000s of validators like Bitcoin or Ethereum, which can have an unlimited number of validators. Tendermint works when there are 100s of validators. (Cosmos Hub currently has a maximum of 100 validators and the maximum tested so far with Tendermint is 180 validators)
Therefore, one of the downsides of a blockchain built using Tendermint is that, unlike Bitcoin or Ethereum, it requires the validators to be known ahead of time and doesn’t allow for miners to come and go as they please.Besides this, it also requires the system to maintain some notion of time, which is known to be a complex problem in theory. Although in practice, Tendermint has proven this can be done reasonably well if you use the timestamp aggregates of each node.
In this regard, one could argue that Tendermint consensus protocol is “less decentralized” than Bitcoin because there are fewer validators, and they must be known ahead of time.
Tendermint’s protocol guarantees safety and liveness, assuming more than 2/3 of the validators’ voting power is not Byzantine (i.e., malicious). In other words, if less than 1/3 of the network voting power is Byzantine, the protocol can guarantee safety and liveness (i.e., validators will never commit conflicting blocks at the same height and the blockchain continues to make progress).https://www.preethikasireddy.com/posts/how-does-cosmos-work-part1
To see the process of how Tendermint works please see this diagram as well as more info here

Sovereignty

Cosmos goal is to provide sovereignty through governance to developers by making it easy to build blockchains via the Cosmos SDK and provide interoperability between them, using Tendermint consensus. This is their main differentiator compared to competition like Polkadot and Ethereum 2.0. Ethereum 2.0 and Polkadot are taking a different approach by only using shared security, where there is a root chain which controls the security / prevents double spending for all connected blockchains.
In Hub governance all stakers vote, the validators vote is superseded if the delegator votes directly
Governance is where all stakers vote on proposals to determine what changes are implemented in the future for their own blockchain, stakers can either choose to delegate their vote to the validator or they can instead vote directly. Without sovereignty all DAPPs share the same underlying environment. If an application requires a new feature in the EVM it has to rely entirely on the governance of the Ethereum Platform to accept it for example. However, there are also tradeoffs to having sovereignty as each zone is going to need a way to incentivise others to validate / create blocks on the Zone by running Full Nodes. Whilst it may be easy to create a blockchain using the cosmos SDK and to mint a token, there are the legal costs / regulation associated with creating your own token. How are you going to distribute the tokens? How are you going to list them on exchanges? How are you going to incentivise others to use the token without being classed as a security? All of which have led to a significant reduction in the number of ICOs being done. With every zone needing their own validator set, there’s going to be a huge number of validators required each trying to persuade them to validate their zone with only a finite number of validators available.
Each Zone / App is essentially a mini DAO and not all are going to be comfortable about having their project progress been taken out of their hands and instead relying on the community to best decide on the future (unless they control 2/3 of the tokens). The Cosmos Hub has proved this can be successful, but others may be risk averse to having their application be a mini DAO. Should someone / competitor acquire 1/3 of the tokens of a zone then they could potentially prevent any further progress being made by rejecting all governance votes (this would be very costly to do on the Cosmos Hub due to its high amount staked, but for all the other less secure zones this potentially may be an issue).
Security for some zones will likely be a lot lower with every developer needing to validate their own blockchain and tokenise them with POS with no easy way to validate the setup of a validator to ensure its secure. Whilst the Cosmos hub is very secure with its current value staked, how secure zone’s will be with significantly less staked remains to be seen. Whilst providing soverignty was Cosmos’s main goal from the start, they are also looking at being able to provide shared security by having validators of a connected Hub also validate /create new blocks on the connected zone’s blockchain for them as well. They are still going to need some way to incentivise the validators to this. Another option is if the developers didn’t want to create a token, nor want sovereignty etc, then they could just build a DAPP on the EVM on a zone such as Ethermint.
As can be seen their are potential advantages and disadvantages to each method, but rather than forcing shared security like Ethereum and Polkadot, Cosmos is giving the developer the choice so will be interesting to see which they prefer to go for.

Layers of a blockchain

From an architecture standpoint, each blockchain can be divided into three conceptual layers:
  • Application: Responsible for updating the state given a set of transactions, i.e. processing transactions.
  • Networking: Responsible for the propagation of transactions and consensus-related messages.
  • Consensus: Enables nodes to agree on the current state of the system.
The state machine is the same as the application layer. It defines the state of the application and the state-transition functions. The other layers are responsible for replicating the state machine on all the nodes that connect to the network.
The Cosmos SDK is a generalized framework that simplifies the process of building secure blockchain applications on top of Tendermint BFT. The goal of the Cosmos SDK is to create an ecosystem of modules that allows developers to easily spin up application-specific blockchains without having to code each bit of functionality of their application from scratch. Anyone can create a module for the Cosmos SDK and using ready built modules in your blockchain is as simple as importing them into your application.
The Tendermint BFT engine is connected to the application by a socket protocol called the Application Blockchain Interface (ABCI). This protocol can be wrapped in any programming language, making it possible for developers to choose a language that fits their needs.

https://preview.redd.it/5vpheheqmba31.png?width=770&format=png&auto=webp&s=ec3c58fb7fafe10a512dbb131ecef6e841e6721c

Hub and Spoke Topology

Cosmos follows a hub and spoke topology as its not feasible to connect every zone together. If you were to connect every blockchain together the number of connections in the network would grow quadratically with the number of zones. So, if there are 100 zones in the network then that would equal 4950 connections.
Zones are regular heterogenous blockchains and Hubs are blockchains specifically designed to connect Zones together. When a Zone creates an IBC connection with a Hub, it can automatically access (i.e. send to and receive from) every other Zone that is connected to it. As a result, each Zone only needs to establish a limited number of connections with a restricted set of Hubs. Hubs also prevent double spending among Zones. This means that when a Zone receives a token from a Hub, it only needs to trust the origin Zone of this token and each of the Hubs in its path. Hubs do not verify or execute transactions committed on other zones, so it is the responsibility of users to send tokens to zones that they trust.
There will be many Hubs within Cosmos network the first Hub to launch was the Cosmos Hub whose native staking token is called ATOM. ATOM tokens are specific to just the Cosmos Hub which is one hub of many, each with their own token. Transaction fees for the Cosmos Hub will be payable in multiple tokens so not just ATOMs whereas other Hubs such as IRIS has made it so that all transaction fees are paid in IRIS for transactions on its hub.
As mentioned, the Cosmos Hub is one of many hubs in the network and currently has a staking ratio of around 70% with its token ATOM having a market cap of just over $800 million. IRISnet was the second Hub to launch which currently has around 28% bonded with its token IRIS which has a market cap of just under $17 million. The Third Hub about to be launched later this month has its token SENT which has a market cap of around $3.4 million. As you can see the security of these 3 hubs differ wildly and as more and more hubs and then zones are brought online there is going to need to be a lot of tokens / incentivisation for validators.
Ethermint
Standard Cosmos zones / hubs don’t have smart contract functionality and so to enable this, as the Application layer is abstracted from the consensus layer via ABCI API described earlier, it allows Cosmos to port the code over from other blockchains such as Ethereum and use it with the Tendermint Consensus to provide access to the Ethereum Virtual Machine. This is what is called Ethermint.
This allows developers to connect their zones to specialised zones such as Ethermint to build and run smart contracts based on Solidity, whilst benefiting from the faster performance of the tendermint Conensus over the existing POW implementation currently. Whereas a normal Go Ethereum process runs at ~12.5 transactions per second (TPS), Ethermint caps out at 200 TPS. This is a comparison against existing Ethereum speeds, whilst obviously Ethereum are working on their own scaling solutions with Ethereum 2.0 which will likely be ready around the same time. Existing tools / dapps used on ethereum should easily be able to be ported over to Ethermint by the developer if required.
In addition to vertical scaling (with the increase in tps by using Tendermint consensus), it can also have multiple parallel chains running the same application and operated by a common validator set. So if 1 Ethermint zone caps out at 200 TPS then 4 Ethermint zones running in parallel would theoretically cap out at 800 TPS for example.

https://preview.redd.it/e2pghr9smba31.png?width=554&format=png&auto=webp&s=a6e472a6e4a0f3845b03c36caef8b42d77125e46
There is a huge number of developers / apps currently built on Ethereum, should a developer choose to migrate their DAPP over to Ethermint they would lose native compatibility with those on Ethereum (except through Peg Zone), but would gain compatibility with those running on Ethermint and others in the cosmos ecosystem.
You can find out more about Ethermint here and here

IBC

IBC stands for inter-blockchain communication protocol and is an end-to-end, connection-oriented, stateful protocol for reliable, ordered, authenticated communication between modules on separate distributed ledgers. Ledgers hosting IBC must provide a certain set of functions for consensus transcript verification and cryptographic commitment proof generation, and IBC packet relayers (off-chain processes) are expected to have access to network protocols and physical datalinks as required to read the state of one ledger and submit data to another.
In the IBC architecture, modules are not directly sending messages to each other over networking infrastructure, but rather creating messages to be sent which are then physically relayed via “Relayers”. “Relayers” run off-chain and continuously scan the state of each ledger via a light client connected to each of the 2 chains and can also execute transactions on another ledger when outgoing datagrams have been committed. For correct operation and progress in a connection between two ledgers, IBC requires only that at least one correct and live relayer process exists which can relay between the ledgers. Relays will need to be incentivised to perform this task (the method to which hasn’t been established as of this writing)
The relay process must have access to accounts on both chains with sufficient balance to pay for transaction fees. Relayers may employ application-level methods to recoup these fees, such by including a small payment to themselves in the packet data. More information on Relayers can be found here

https://preview.redd.it/qr4k6cxtmba31.png?width=1100&format=png&auto=webp&s=d79871767ced4bcb0b2632cc137c118f70c3863a
A high-level overview of the process is that Zone 1 commits an outbound message on its blockchan about sending say 1 x Token A to Hub1 and puts 1 x Token A in escrow. Consensus is reached in Zone 1, and then it’s passed to the IBC module to create a packet which contains the reference to the committed block, source and destination channel/ connection and timeout details and is added to Zone 1’s outbound queue as proof.
All relayers (who run off-chain) are continuously monitoring the state of Zone 1 via the Zone 1 light client. A Relayer such as Relayer 1 is chosen and submits a proof to Hub1 that Zone 1.
Hub 1 then sends a receipt as proof that it has received the message from Zone 1, relayer1 sends it to Zone 1. Zone 1 then removes it from its outbound queue and sends proof via another receipt to Hub1. Hub1 verifies the proof and mints the token.

https://preview.redd.it/qn7895rumba31.png?width=770&format=png&auto=webp&s=96d9d808b2284f87d45fa0bd7b8bff297c86c2da
This video below explains the process in more detail as well as covers some of the other points i raise later in this article so worth a watch (time stamped from 22:24 to 32:25) and also here from 38:53 to 42:50
https://youtu.be/5h8DXul4lH0?t=1344
Whilst there is an option for UDP style transfer where a zone will send a message to a Hub and it doesn’t care whether it gets there or in any order etc, Token transfers are going to require the TCP style connections in IBC where there is a send, receipt and then another receipt as explained above. Each Send, receipt followed by another receipt is going to take at least 2 blocks and so using Cosmos Hub block times as an example with 6.88 second block times a transfer between one zone and hub could take a minimum of 41.28 seconds. You also then have to factor in the amount of other transactions going through those at that time and relevant gas price to see whether it is able to use 2 consecutive blocks or whether it may take more. This is also explained in this video “ILP Summit 2019 | Cosmos and Interledger | Sunny Aggarwal” (time stamped) from to 12:50 to 15:45

In Part Two we will look at potential issues with multi hop routing, token transfers across multiple routes and Peg Zones, whilst also looking at other interoperability solutions that would resolve some of these issues and compliment the cosmos ecosystem. Part Two can be found here
submitted by xSeq22x to cosmosnetwork [link] [comments]

The Best Privacy Coins Today: A Comparison

A little-known fact about cryptocurrencies such as Bitcoin, Ethereum, Bitcoin Cash, and others, is that, contrary to popular belief, they aren't anonymous. Perhaps the belief that they are anonymous persists because rather than using real names in transactions, crypto transactions such as sending bitcoin from one wallet to another only require a string of text and numbers known as public addresses.
Public addresses, however, are pseudonymous, and still provide anyone with the sophistication and resources the ability to track down the personal details of the actors within an exchange. Within the last year, several well-known and popular figures within the cryptocurrency industry have had their identities and funds compromised, with millions of dollars lost.
Pseudonymity is not Anonymity
Just because your name, birthdate, and geographic location are not apparently tied to your cryptocurrency wallet doesn't mean that they can't be found out using your public address alone. The reason for this is simple: blockchain analysis. What is blockchain analysis? There are two forms of it; one is simple, the other much more sophisticated.
The simple version of blockchain analysis is one that anyone with access to the internet can perform. On any block explorer, whether it's for Bitcoin, Qtum, Neo, Ethereum, or Icon, you will find a search field into which any wallet address can be looked up. If you input your own public address, you will see the entire history of your financial activity on the blockchain laid bare. Who you've sent to, who you've received from, and what you own on the blockchain are all part of the public domain of blockchain information that is viewable by the world. If you're thinking that it's not a problem since you've got your public address shielding your real identity, then think again.
The sophisticated method of blockchain analysis aims to make connections and uncover a logic between different entities on blockchains. Essentially, this type of blockchain analysis views blockchains as massive Sudoku puzzles -- and with enough computer power and effective enough algorithms, patterns can be easily found on blockchains that lead hackers, blockchain analysis startups working for government organizations, and others straight to your actual identity.
Consider the way you entered into the cryptocurrency market in the first place. You had to buy bitcoin using Coinbase, Kraken, Bithumb, or another exchange with a fiat to crypto gateway. Doing so required your personal and bank details owing to the fact that regulated exchanges must comply with KYC (know-your-customer) and AML (anti-money-laundering) laws. After entering all of the required personal information, the exchange set about to confirm your details by sharing them with other third-party KYC organizations.
Finally, your documents and details were verified, allowing the chance to enter the market. After your you bought bitcoin, the natural thing to do was send it away from the exchange wallet and into your own software or hardware wallet. Then, perhaps you sent some bitcoin to Binance in order to buy a cryptocurrency asset such as ethereum. After purchasing ETH, perhaps you sent it back to your wallet before using it to participate in an ICO. This entire web of financial activity may seem disconnected and hard to trace, yet to a powerful enough blockchain analysis engine tracing all the way back to your initial exchange of purchase would have no problem at all uncovering your IP address and, eventually, your identity.
Using Anonymity to Protect your Digital Assets
The above scenario is in large part why privacy tokens such as Apollo Currency, Monero, Verge, and Dash have found popularity and value within cryptocurrency markets. Essentially, users are looking for a cryptocurrency asset which gives them the private, financial autonomy blockchain seemed to promise in its early days without being exposed to the possibility of being hacked, monitored, or otherwise controlled by outside parties.
Which Are the Best Coin for Anonymity?
The top contenders in the cryptocurrency marketplace for taking best privacy coin honors are Monero, Verge, and Dash, and Apollo Currency. Despite having some similarities, they are all in fact quite different. After the comparison, we'll share the reasons why three of these coins fail to provide adequate privacy while only one of them provides true anonymity and more.
Dash
Dash is a digital currency and payment network that places its privacy feature as an option rather than as the main feature. For this alone, it is already on the backfoot. Rather than have privacy built into every transaction as a standard, the Dash development team instead opted to give users the option to make transactions private using a feature called PrivateSend.
Despite having started out as Darkcoin, Dash changed paths and began focusing on mass-adoption and placed it's anonymity features to the side. As such, there are concerns around the centralization of Dash masternodes which are largely hosted by cloud AWS services leading to legitimate worry that government agencies could one day demand, and have access to, transaction logs.
Beyond this, Dash does not feature stealth addresses, encrypted messaging, IP masking, or a secure form of coin shuffling. Dash relies on CoinJoin for its PrivateSend feature which requires users to negotiate with each other during the transaction process.
Monero
Monero has the largest reputation when it comes to anonymous cryptocurrency. Apart from enjoying wide adoption and a stellar market capitalization, Monero is open-source and uses a proof-of-work algorithm for consensus along with RingCT signatures for privacy.
In sharp contrast to Dash, Monero is not a privacy-optional coin. Every transaction uses RingCT (confidential-transactions) to hide the sources of transactions in a given set. In theory, this should shield every transaction with anonymity, yet in practice, quite the opposite has been found. Researchers from MIT published a report titled "An Empirical Analysis of Traceability in the Monero Blockchain" wherein they revealed that they were able to trace 80% of Monero transactions prior to the integration of RingCT and 45% of transactions after its integration.
Beyond this, Monero lacks an encrypted messaging platform, does not mask IP addresses, does not function as a bitcoin mixer, and its proof-of-work consensus algorithm has significant negative effects on the environment.
Verge
Verge deserves a mention if only because of its bold claims. Prior to their Wraith update, Verge developers claimed that they would use Tor and I2P networks to anonymize user IP addresses. Unfortunately, not long after the Wraith update was announced, it appeared that Tor had not been integrated at all and several cryptocurrency whistleblower websites were able to track IP addresses involved in Verge transactions.
Initially called DogeCoinDark, Verge also uses two ledgers -- a private and a public ledger. This is to allow users the option of switching between ledgers depending on the type of transaction made and the level of disclosure the user prefers for that transaction. Like Monero, Verge lacks a coin shuffling function, claims to mask IP addresses but fails in practice, does not offer an alias system (meaning users can not encrypt text), and relies on a slow proof-of-work algorithm for consensus.
Apollo Currency
Apollo Currency picks up where privacy coins prior to it have left off and then goes several leaps further. Rather than offer a cut-rate privacy coin, Apollo has taken the strengths of other privacy coins and made them stronger, while also containing what they lack -- namely, real anonymity and financial freedom on the blockchain.
Apollo's Olympus Protocol ushers forth a new paradigm of anonymous transactions using a host of innovations. IP masking via Tor will allow for untraceable transactions directly from the Apollo wallet without the risk of having a compromised IP address somewhere down the line. Apollo also features coin-shuffling which, like bitcoin mixing, is a process for coin anonymization that makes shuffled coins resistant to tracing and blockchain analysis.
The way this works is simple - Apollo users simply send their coins through the shuffling mechanism which then pools user coins together, mixes them, then sends each user their specified amount of coins back from different sources than they started with. The result is complete anonymity and a break in the connection between sending and receiving addresses.
Apollo's encrypted messaging platform furthers the total anonymity offered by the currency. Users can communicate and transfer files without a trace, all the while having their IP addresses masked by Olympus Protocol.
Conclusion
Until Monero and Verge clear up the allegations made by researchers from MIT and other institutions that users are vulnerable to having their IP addresses exposed, I would steer clear of them. Dash and Apollo Currency are proven and both offer coin shuffling which is a real, proven coin anonymization technique that offers the best of privacy.
As always, it's best to DYOR (do your own research).
submitted by stardawg777 to CryptoCurrency [link] [comments]

Cosmos — an early in-depth analysis at the ecosystem of connected blockchains — Part One

Cosmos — an early in-depth analysis at the ecosystem of connected blockchains — Part One
This is part one of three articles where i will discuss what i have learnt whilst looking into Cosmos. I will provide links throughout the article to provide reference to sections as well as a list of sources at the bottom of the article for you to look into specific areas in more detail if required. Hopefully it will be useful for those interested in learning more about the project.
Cosmos is still very early in development process with components such as IBC which connects two blockchains together currently in research / specification stage, as a result can change by the time its released.

What is Cosmos?

Cosmos is a network and a framework for interoperability between blockchains. The zones are powered by Tendermint Core, which provides a high-performance, consistent, secure PBFT-like consensus engine, where strict fork-accountabilityguarantees hold over the behaviour of malicious actors. Cosmos is not a product but an ecosystem built on a set of modular, adaptable and interchangeable tools.
In Tendermint, consensus nodes go through a multi-round voting proposal process first before coming to consensus on the contents of a block. When 2/3 of those nodes decide on a block, then they run it through the state transition logic providing instant finality. In current proof of work consensus for Ethereum, the consensus process is inverted, where miners pick the transactions to include in a block, run state updates, then do “work” to try and mine the block.
Tendermint BFT can handle up to thousands of transactions per second (depending on the number of validators). However, this only takes into account the consensus part, the application layer is the limiting factor though. Ethermint (described below) has achieved up to 200 tps to give you an idea of the speed available per blockchain which is significantly more than current versions of Ethereum and Bitcoin etc.
The Tendermint consensus is used in a wide variety of projects, some of the most notable include Binance Chain, Hyperledger Burrow. It’s important to note though that just using Tendermint consensus doesn’t mean they can connect to other chains with the cosmos ecosystem, they would need to fork their code to implement IBC as a native protocol to allow interoperability through IBC.

see https://raw.githubusercontent.com/devcorn/hackatom/mastetminfo.pdf for high res

The Tendermint consensus algorithm follows a traditional approach which relies on all validators to communicate with one another to reach consensus. Because of the communication overhead, it does not scale to 1000s of validators like Bitcoin or Ethereum, which can have an unlimited number of validators. Tendermint works when there are 100s of validators. (Cosmos Hub currently has a maximum of 100 validators and the maximum tested so far with Tendermint is 180 validators)
Therefore, one of the downsides of a blockchain built using Tendermint is that, unlike Bitcoin or Ethereum, it requires the validators to be known ahead of time and doesn’t allow for miners to come and go as they please.Besides this, it also requires the system to maintain some notion of time, which is known to be a complex problem in theory. Although in practice, Tendermint has proven this can be done reasonably well if you use the timestamp aggregates of each node.
In this regard, one could argue that Tendermint consensus protocol is “less decentralized” than Bitcoin because there are fewer validators, and they must be known ahead of time.
Tendermint’s protocol guarantees safety and liveness, assuming more than 2/3 of the validators’ voting power is not Byzantine (i.e., malicious). In other words, if less than 1/3 of the network voting power is Byzantine, the protocol can guarantee safety and liveness (i.e., validators will never commit conflicting blocks at the same height and the blockchain continues to make progress).https://www.preethikasireddy.com/posts/how-does-cosmos-work-part1
To see the process of how Tendermint works please see this diagram as well as more info here

Sovereignty

Cosmos goal is to provide sovereignty through governance to developers by making it easy to build blockchains via the Cosmos SDK and provide interoperability between them, using Tendermint consensus. This is their main differentiator compared to competition like Polkadot and Ethereum 2.0. Ethereum 2.0 and Polkadot are taking a different approach by only using shared security, where there is a root chain which controls the security / prevents double spending for all connected blockchains.
Governance is where all stakers vote on proposals to determine what changes are implemented in the future for their own blockchain, stakers can either choose to delegate their vote to the validator or they can instead vote directly. Without sovereignty all DAPPs share the same underlying environment. If an application requires a new feature in the EVM it has to rely entirely on the governance of the Ethereum Platform to accept it for example. However, there are also tradeoffs to having sovereignty as each zone is going to need a way to incentivise others to validate / create blocks on the Zone by running Full Nodes. Whilst it may be easy to create a blockchain using the cosmos SDK and to mint a token, there are the legal costs / regulation associated with creating your own token. How are you going to distribute the tokens? How are you going to list them on exchanges? How are you going to incentivise others to use the token without being classed as a security? All of which have led to a significant reduction in the number of ICOs being done. With every zone needing their own validator set, there’s going to be a huge number of validators required each trying to persuade them to validate their zone with only a finite number of validators available.
Each Zone / App is essentially a mini DAO and not all are going to be comfortable about having their project progress been taken out of their hands and instead relying on the community to best decide on the future (unless they control 2/3 of the tokens). The Cosmos Hub has proved this can be successful, but others may be risk averse to having their application be a mini DAO. Should someone / competitor acquire 1/3 of the tokens of a zone then they could potentially prevent any further progress being made by rejecting all governance votes (this would be very costly to do on the Cosmos Hub due to its high amount staked, but for all the other less secure zones this potentially may be an issue).
Security for some zones will likely be a lot lower with every developer needing to validate their own blockchain and tokenise them with POS with no easy way to validate the setup of a validator to ensure its secure. Whilst the Cosmos hub is very secure with its current value staked, how secure zone’s will be with significantly less staked remains to be seen. Whilst providing soverignty was Cosmos’s main goal from the start, they are also looking at being able to provide shared security by having validators of a connected Hub also validate /create new blocks on the connected zone’s blockchain for them as well. They are still going to need some way to incentivise the validators to this. Another option is if the developers didn’t want to create a token, nor want sovereignty etc, then they could just build a DAPP on the EVM on a zone such as Ethermint.
As can be seen their are potential advantages and disadvantages to each method, but rather than forcing shared security like Ethereum and Polkadot, Cosmos is giving the developer the choice so will be interesting to see which they prefer to go for.

Layers of a blockchain

From an architecture standpoint, each blockchain can be divided into three conceptual layers:
  • Application: Responsible for updating the state given a set of transactions, i.e. processing transactions.
  • Networking: Responsible for the propagation of transactions and consensus-related messages.
  • Consensus: Enables nodes to agree on the current state of the system.
The state machine is the same as the application layer. It defines the state of the application and the state-transition functions. The other layers are responsible for replicating the state machine on all the nodes that connect to the network.
The Cosmos SDK is a generalized framework that simplifies the process of building secure blockchain applications on top of Tendermint BFT. The goal of the Cosmos SDK is to create an ecosystem of modules that allows developers to easily spin up application-specific blockchains without having to code each bit of functionality of their application from scratch. Anyone can create a module for the Cosmos SDK and using ready built modules in your blockchain is as simple as importing them into your application.
The Tendermint BFT engine is connected to the application by a socket protocol called the Application Blockchain Interface (ABCI). This protocol can be wrapped in any programming language, making it possible for developers to choose a language that fits their needs.

https://preview.redd.it/go1bgareiba31.png?width=770&format=png&auto=webp&s=c9a2c9faa9c99dd8c7a7b6925c7ea281e203eb47

Hub and Spoke Topology

Cosmos follows a hub and spoke topology as its not feasible to connect every zone together. If you were to connect every blockchain together the number of connections in the network would grow quadratically with the number of zones. So, if there are 100 zones in the network then that would equal 4950 connections.
Zones are regular heterogenous blockchains and Hubs are blockchains specifically designed to connect Zones together. When a Zone creates an IBC connection with a Hub, it can automatically access (i.e. send to and receive from) every other Zone that is connected to it. As a result, each Zone only needs to establish a limited number of connections with a restricted set of Hubs. Hubs also prevent double spending among Zones. This means that when a Zone receives a token from a Hub, it only needs to trust the origin Zone of this token and each of the Hubs in its path. Hubs do not verify or execute transactions committed on other zones, so it is the responsibility of users to send tokens to zones that they trust.
There will be many Hubs within Cosmos network the first Hub to launch was the Cosmos Hub whose native staking token is called ATOM. ATOM tokens are specific to just the Cosmos Hub which is one hub of many, each with their own token. Transaction fees for the Cosmos Hub will be payable in multiple tokens so not just ATOMs whereas other Hubs such as IRIS has made it so that all transaction fees are paid in IRIS for transactions on its hub.
As mentioned, the Cosmos Hub is one of many hubs in the network and currently has a staking ratio of around 70% with its token ATOM having a market cap of just over $800 million. IRISnet was the second Hub to launch which currently has around 28% bonded with its token IRIS which has a market cap of just under $17 million. The Third Hub about to be launched later this month has its token SENT which has a market cap of around $3.4 million. As you can see the security of these 3 hubs differ wildly and as more and more hubs and then zones are brought online there is going to need to be a lot of tokens / incentivisation for validators.

Ethermint

Standard Cosmos zones / hubs don’t have smart contract functionality and so to enable this, as the Application layer is abstracted from the consensus layer via ABCI API described earlier, it allows Cosmos to port the code over from other blockchains such as Ethereum and use it with the Tendermint Consensus to provide access to the Ethereum Virtual Machine. This is what is called Ethermint.
This allows developers to connect their zones to specialised zones such as Ethermint to build and run smart contracts based on Solidity, whilst benefiting from the faster performance of the tendermint Conensus over the existing POW implementation currently. Whereas a normal Go Ethereum process runs at ~12.5 transactions per second (TPS), Ethermint caps out at 200 TPS. This is a comparison against existing Ethereum speeds, whilst obviously Ethereum are working on their own scaling solutions with Ethereum 2.0 which will likely be ready around the same time. Existing tools / dapps used on ethereum should easily be able to be ported over to Ethermint by the developer if required.
In addition to vertical scaling (with the increase in tps by using Tendermint consensus), it can also have multiple parallel chains running the same application and operated by a common validator set. So if 1 Ethermint zone caps out at 200 TPS then 4 Ethermint zones running in parallel would theoretically cap out at 800 TPS for example.

https://preview.redd.it/oboyonufiba31.png?width=554&format=png&auto=webp&s=18560aa44596fc2357590b54ddb39fd8ee1c8783
There is a huge number of developers / apps currently built on Ethereum, should a developer choose to migrate their DAPP over to Ethermint they would lose native compatibility with those on Ethereum (except through Peg Zone), but would gain compatibility with those running on Ethermint and others in the cosmos ecosystem.
You can find out more about Ethermint here and here
IBC
IBC stands for inter-blockchain communication protocol and is an end-to-end, connection-oriented, stateful protocol for reliable, ordered, authenticated communication between modules on separate distributed ledgers. Ledgers hosting IBC must provide a certain set of functions for consensus transcript verification and cryptographic commitment proof generation, and IBC packet relayers (off-chain processes) are expected to have access to network protocols and physical datalinks as required to read the state of one ledger and submit data to another.
In the IBC architecture, modules are not directly sending messages to each other over networking infrastructure, but rather creating messages to be sent which are then physically relayed via “Relayers”. “Relayers” run off-chain and continuously scan the state of each ledger via a light client connected to each of the 2 chains and can also execute transactions on another ledger when outgoing datagrams have been committed. For correct operation and progress in a connection between two ledgers, IBC requires only that at least one correct and live relayer process exists which can relay between the ledgers. Relays will need to be incentivised to perform this task (the method to which hasn’t been established as of this writing)
The relay process must have access to accounts on both chains with sufficient balance to pay for transaction fees. Relayers may employ application-level methods to recoup these fees, such by including a small payment to themselves in the packet data. More information on Relayers can be found here

https://preview.redd.it/twjzlc8hiba31.png?width=1100&format=png&auto=webp&s=2e546142573b61af031e27dac83ddca675a4b693
A high-level overview of the process is that Zone 1 commits an outbound message on its blockchan about sending say 1 x Token A to Hub1 and puts 1 x Token A in escrow. Consensus is reached in Zone 1, and then it’s passed to the IBC module to create a packet which contains the reference to the committed block, source and destination channel/ connection and timeout details and is added to Zone 1’s outbound queue as proof.
All relayers (who run off-chain) are continuously monitoring the state of Zone 1 via the Zone 1 light client. A Relayer such as Relayer 1 is chosen and submits a proof to Hub1 that Zone 1.
Hub 1 then sends a receipt as proof that it has received the message from Zone 1, relayer1 sends it to Zone 1. Zone 1 then removes it from its outbound queue and sends proof via another receipt to Hub1. Hub1 verifies the proof and mints the token.

https://preview.redd.it/d4dclm3iiba31.png?width=770&format=png&auto=webp&s=9ca521efc8580800067e1c4e3f74c0ab8df30555
This video below explains the process in more detail as well as covers some of the other points i raise later in this article so worth a watch (time stamped from 22:24 to 32:25) and also here from 38:53 to 42:50
https://youtu.be/5h8DXul4lH0?t=1344

Whilst there is an option for UDP style transfer where a zone will send a message to a Hub and it doesn’t care whether it gets there or in any order etc, Token transfers are going to require the TCP style connections in IBC where there is a send, receipt and then another receipt as explained above. Each Send, receipt followed by another receipt is going to take at least 2 blocks and so using Cosmos Hub block times as an example with 6.88 second block times a transfer between one zone and hub could take a minimum of 41.28 seconds. You also then have to factor in the amount of other transactions going through those at that time and relevant gas price to see whether it is able to use 2 consecutive blocks or whether it may take more. This is also explained in this video “ILP Summit 2019 | Cosmos and Interledger | Sunny Aggarwal” (time stamped) from to 12:50 to 15:45

In Part Two we will look at potential issues with multi hop routing, token transfers across multiple routes and Peg Zones, whilst also looking at other interoperability solutions that would resolve some of these issues and compliment the cosmos ecosystem. Part Two can be found here
submitted by xSeq22x to CryptoCurrency [link] [comments]

TOP 6 BITCOIN/CRYPTO EXCHANGES IN 2020  COMPARISON Binance V Hitbtc Exchange DigiByte vs Bitcoin  Which One Is Better to Use ? (Crypto) Buy Bitcoin - Kris Marszalek CEO Crypto.Com  On Binance  CRO MCO Utility  Crypto.com Exchange Bittrex or Binance Which Crypto Exchange is Best? Bitcoin vs Fiat Profit Dilemma - Why the Bitcoin trade pairing matters Crypto Visa Cards COMPARED: Side-by-Side 💳 - YouTube Binance Bot Tutorial - Intro Python Auto Trading Software - Chapter 1 Best Crypto Exchange 2020 Bitcoin Trading Platform ... Binance vs Bittrex - Cryptocurrency Exchanges Compared Side-By-Side!

Bitcoin and Crypto Currencies are digital forms of electronic money. They are different to the traditional fiat money system in three key ways: transactions are anonymous, you can create your own wallet bank account in minutes and the network is decentralised run through consensus of its participants. Finding the best cryptocurrency exchange can be such a daunting task. It becomes an even bigger task when you have to choose between two of the biggest cryptocurrency exchanges in the world. With this comparison between Binance vs Bittrex, we are going to be looking at the important role crypto exchanges play in the crypto sphere.Also, you will be able to choose as to which exchange suits your ... Binance can proudly boast with one of the lowest fees on the crypto market – standing as low as 0.1%. However, there are also some transaction fees levied regardless of the platform – such, Bitcoin costs 0.0004 BTC per external transfer, which is about $4. These fees are unavoidable; that’s why each time, while transacting via exchange to an external wallet, the user is exposed to small ... Use this crypto comparison tool to compare coins, ICOs, exchanges, and countries. This feature can be helpful in choosing your investments. x. Login. Login to get access to our platform's unique features: Coin voting; Commenting; Remember me. Remind me my password. x. Sign Up. Sign up to get access to our platform's unique features: Coin voting; Commenting; I want to receive a newsletter. I ... Binance Market, buy cryptocurrencies. ... Criptonex is a price comparison of crypto coins. You will find the best prices of Bitcoin, Ethereum and other altcoins in the most reliable exchanges. Select your crypto currency and compare the prices between the different exchanges. The system calculates and displays in real time the different prices thanks to a complex algorithm. This way, you will ... Binance cryptocurrency exchange - We operate the worlds biggest bitcoin exchange and altcoin crypto exchange in the world by volume We bring you all the latest streaming pricing data in the world of cryptocurrencies. Whether you are just interested in the bitcoin price or you want to see the latest ether volume, we have all the data available at your fingertips. Join the discussion on our active forums, get daily market updates, and gain access to the best reviews and data in the cryptocurrency sector. Bitcoin (BTC), Bitcoin Cash (BCH) & Bitcoin SV (BCH) (November 2018 - December 2019) 2.1 Efficient resource allocation theory According to Binance Research, the mining allocation problem can be referred to as a problem of efficient resource allocation, from the perspective of participants in the Bitcoin mining industry: SHA-256 (ASIC) miners . Compare the two cryptocurrencies Binance Coin (BNB) and XRP (XRP). Algorithm, price, market cap, volume, supply, consensus method, links and more. Source: Adobe/VladVasilkov. Automated market makers (AMMs) have played a significant role in catapulting decentralized finance to the forefront of the crypto markets.In our DeFi Unlocked series, we delve into the space to understand ...

[index] [4161] [4788] [9532] [21864] [17082] [3488] [4917] [8173] [5430] [285]

TOP 6 BITCOIN/CRYPTO EXCHANGES IN 2020 COMPARISON

Binance.com VS Hitbtc.com Comparison Best Bitcoin Exchange 2018 who is better for Bitcoin, altcoins, Icos and or for all cryptocurrencies exchanges in genera... Receive a 10% fee discount leveraging Bitcoin on Bitmex: https://www.bitmex.com/register/KTMFQ9 Best Crypto Exchange 2020 Bitcoin Trading Platform - Coinbase... Since cryptocurrency first appeared, a plethora of exchange platforms have sprung up to facilitate transfers of digital coins such as Bitcoin, Ethereum and other altcoins. Cryptocurrency exchanges ... 🔥 TOP Crypto TIPS In My Newsletter 👉 https://signup.coinbureau.com/newsletter 📲 Coin Bureau Insider Channel 👉 https://t.me/cbinsider 🛒 Get A Ruby Card ... Book-Bitcoin Billions: https://goo.gl/u3JAJV Please subscribe to my channel and comment below! Binance: https://bit.ly/2MjREka When investing in cryptocurrency, it's important to understand the difference between fiat gains/profits and Bitcoin gains/profits. Sometimes, you can make s... Crypto.com platform is a trusted brand in the industry with over 1 million users spread across Asia, the US, and Europe. Watch our previous interviews with Kris - Feb 10, 2018 https://youtu.be ... Binance vs Bittrex compared side-by-side to determine which exchange is best for trading cryptocurrency. After reviewing each exchange, there is a clear winner for buying and selling altcoins. Binance Bot Tutorial, Trading Bitcoin, Ethereum and other Cryptocurrencies on the Binance Exchange. Learn How To build an algorithmic cryptocurrency trading bot with Python - DigiByte can be mined with 5 different mining algorithms compering to only one bitcoin’s mining algorithm, it may help to decentralized this cryptocurrency… More details you can find in the video.

#